

Time-Evolving Photo-Ionization Device for Compact Sources

Alfredo Luminari INAF – IAPS and Observatory of Rome (OAR)

In collaboration with: *F.Nicastro* (INAF), *Y. Krongold* (UNAM), *L. Piro, A. Thakur* (INAF) + many others!

Time Evolving Photo-Ionization Device (TEPID)

from theoretical modelling to spectral fitting

Outline

- *i. Ionised Outflows: open questions*
- *ii. Time-evolving photoionization with TEPID:*
 - *i.* Code setup
 - *ii. Time-evolving computation*
 - *iii.* X-ray absorption spectra
- iii. Conclusions

i. Ionised Outflows. AGNs

NGC 3783: a 900 ks *Chandra* grating spectrum. Wealth of absorption features at 600 km/s

PDS456: a P-Cygni profile in the hard X-ray band. $log(\xi) = 5.5, N_H = 7 \cdot 10^{23} cm^{-2}, v_{out} = 0.25 c$

Kaspi+02

band. = 0.25 c

i. Ionised Outflows. Compact sources

XRB GRO J1655 - Fukumura+17

ULX NGC1313-X1 – Pinto+16 +20

Main observables:

COLOR INC.

Still after >20 years of X-ray spectroscopy, several questions remain open:

- 1. Location
- 2. Density
- 3. Energetic

Still after >20 years of X-ray spectroscopy, several questions remain open:

Still after >20 years of X-ray spectroscopy, several questions remain open:

- 1. Location
- 2. Density
- 3. Energetic

Degenerate parameter when ionisation is at equilibrium Status and appearance of the gas is uniquely determined by the

ionisation parameter $\xi = \frac{L_{ion}}{nr^2}$

<u>But...</u>

→ degeneration is broken out of ionisation equilibrium!

Still after >20 years of X-ray spectroscopy, several questions remain open:

🖌 Ionising flux

Gas density distance

Constant Ionisation source → Time-equilibrium photoionisation:

 $\xi \propto \frac{F_{ion}}{2}$

Ionisation parameter dictates the physical status of the gas:

i) Temperature is a function of ξ ii) Ionic abundances are given by the balance between recombination and photoionisation:

$$n_{X^i} \propto \frac{\alpha_{rec}}{F_{X^i}}$$

 \rightarrow measure ξ through the ratio of different absorption lines

 \rightarrow measure N_H from line depth

 \rightarrow measure v_{out} from line blueshift

Density and distance are degenerate!

Plenty of dedicated codes: Cloudy, XSTAR, SPEX....

...can we do better?

Yes! Let's exploit time variability!

Variable ionisation source $(t_{var} < t_{eq})$: \rightarrow Time-evolving photoionisation:

Gas ionisation, temperature and density change in time following the ionising flux:

- non-linear behaviour
- dependence from initial conditions
- gas response delayed with respect to the lightcurve
- time-evolving radiative transfer

 \rightarrow need to integrate over the source lightcurve

...can we do better?

Yes! Let's exploit time variability!

Variable ionisation source $(t_{var} < t_{eq})$: \rightarrow Time-evolving photoionisation:

Gas ionisation, temperature and density change in time following the ionising flux:

- non-linear behaviour
- dependence from initial conditions
- gas response delayed with respect to the lightcurve
- time-evolving radiative transfer

 \rightarrow need to integrate over the source lightcurve

NGC4051 – Krongold, Nicastro+07

Nicastro+99

<u>Low density</u>: longer t_{eq} , ionisation equilibrium not granted <u>High density</u>: smaller t_{eq} , closer to the ionisation equilibrium limit

 \rightarrow time-evolving ionisation breaks the density degeneracy!

Time Evolving Photolonisation Device (TEPID)

An optical to X-ray code to follow the time evolving gas ionisation (based on Nicastro+99, Krongold+13):

Ionic abundances

$$\begin{split} \frac{dn_{X^{i}}}{dt} &= - \left[F_{X^{i}} + C_{X^{i}} n_{e} + \alpha_{rec} n_{e} + I_{X^{i-2}}^{AU} \right] n_{X^{i}} \\ &+ \left[F_{X^{i-1}} + C_{X^{i-1}} n_{e} \right] n_{X^{i-1}} + \alpha_{rec} n_{e} n_{X^{i+1}} + I_{X^{i}}^{AU} n_{X^{i-2}} \end{split}$$

 n_e : electron number density $n_e \approx 1.2 n_H$

Time Evolving Photolonisation Device (TEPID)

An optical to X-ray code to follow the time evolving gas ionisation (based on Nicastro+99, Krongold+13):

 $\frac{dn_{X^{i}}}{dt} = -[F_{X^{i}} + C_{X^{i}} n_{e} + \alpha_{rec} n_{e} + I_{X^{i-2}}^{AU}]n_{X^{i}}$ Ionic abundances $+[F_{X^{i-1}} + C_{X^{i-1}} n_{e}]n_{X^{i-1}} + \alpha_{rec} n_{e} n_{X^{i+1}} + I_{X^{i}}^{AU} n_{X^{i-2}}$

<u>Destruction</u>: recombination to i - 1 and photoionisation to i + 1 (Auger i + 2) Creation: recombination from i + 1 and photoionisation from i - 1 (Auger i - 2)

Time Evolving PhotoIonisation Device (TEPID)

An optical to X-ray code to follow the time evolving gas ionisation (based on Nicastro+99, Krongold+13):

 $\frac{dn_{X^{i}}}{dt} = -[F_{X^{i}} + C_{X^{i}} n_{e} + \alpha_{rec} n_{e} + I_{X^{i-2}}^{AU}]n_{X^{i}}$ $+[F_{X^{i-1}} + C_{X^{i-1}} n_{e}]n_{X^{i-1}} + \alpha_{rec} n_{e}n_{X^{i+1}} + I_{X^{i}}^{AU}n_{X^{i-2}}$ Temperature $\Gamma : \text{heating (photoionisation)}$ $\frac{dT}{dt} = \sum_{X,i} [\Gamma - \Lambda] + \Theta \qquad \Lambda : \text{cooling (gas emission)}$ $\Theta : \text{Compton}$

Summed over the gas elements

Time Evolving Photolonisation Device (TEPID)

An optical to X-ray code to follow the time evolving gas ionisation (based on Nicastro+99, Krongold+13):

$$\frac{dn_{X^{i}}}{dt} = -[F_{X^{i}} + C_{X^{i}} n_{e} + \alpha_{rec} n_{e} + I_{X^{i-2}}^{AU}]n_{X^{i}}$$

$$+[F_{X^{i-1}} + C_{X^{i-1}} n_{e}]n_{X^{i-1}} + \alpha_{rec} n_{e}n_{X^{i+1}} + I_{X^{i}}^{AU}n_{X^{i-2}}$$
Temperature
$$\Gamma : \text{heating (photoionisation)} \qquad \text{Charge conservation}$$

$$\frac{dT}{dt} = \sum_{X,i}[\Gamma - \Lambda] + \Theta \qquad \Lambda : \text{cooling (gas emission)} \qquad n_{e} = n_{HII} + n_{HeI} + 2n_{HeII} + \dots$$

$$\Theta : \text{Compton}$$

Summed over the gas elements

Time Evolving Photolonisation Device (TEPID)

An optical to X-ray code to follow the time evolving gas ionisation (based on Nicastro+99, Krongold+13):

$$\frac{dn_{X^{i}}}{dt} = -[F_{X^{i}} + C_{X^{i}} n_{e} + \alpha_{rec} n_{e} + I_{X^{i-2}}^{AU}]n_{X^{i}}$$

$$+[F_{X^{i-1}} + C_{X^{i-1}} n_{e}]n_{X^{i-1}} + \alpha_{rec} n_{e}n_{X^{i+1}} + I_{X^{i}}^{AU}n_{X^{i-2}}$$
Temperature
$$\Gamma : \text{heating (photoionisation)} \qquad \text{Charge conservation}$$

$$\frac{dT}{dt} = \sum_{X,i}[\Gamma - \Lambda] + \Theta \qquad \Lambda : \text{cooling (gas emission)} \qquad n_{e} = n_{HII} + n_{HeI} + 2n_{HeII} + \dots$$

$$\Theta : \text{Compton}$$
Summed over the gas elements
$$F_{trans} = F_{0} \cdot \frac{1 - e^{-\tau}}{\tau}$$

 $F_{trans} = \frac{F_0 \cdot \frac{1 - e^{-\tau}}{\tau}}{\tau}$

ii. TEPID. Code outline

1. Code setup:

10

ionisation and temperature

10⁰

Log(n) = 6.0

Log(n)=10.0

10¹

Spatial resolution:

Gas is sliced in optically-thin slabs. Simulation is propagated from the innermost to the outermost. Radiation is absorbed and geometrically diluted from one slab to the other: $\left(\frac{r_2}{r_1}\right)^2$

$$F_2 = F_1 \cdot \frac{1 - e^{-\tau}}{\tau} \cdot$$

i)

Temporal resolution

adaptive approach as a function of: Lightcurve ii)

Temporal resolution

computed by the code through an adaptive approach as a function of: Lightcurve

ii) n_e

2-step time binning:

1. Decay interval given by t_{eq} :

Lower density \rightarrow slower gas reaction \rightarrow slower decay Higher density \rightarrow faster gas reaction \rightarrow faster decay

2. Resolution $\omega \propto 1/t_{err}$ (error on numerical integration) Lower density \rightarrow slower gas reaction \rightarrow lower ω Higher density \rightarrow faster gas reaction \rightarrow higher ω

ii. TEPID

2. Time evolving computation:

ii. TEPID 2. Time evolving computation:

 $n_e = 10^{12} cm^{-3}$: instantaneous response (ionisation equilibrium) $n_e = 10^8 cm^{-3}$: damped and delayed response $n_e = 10^4 cm^{-3}$: always out of equilibrium (no gas response)

Why this?

For decreasing n_e the gas response is:

- i. <u>Damped</u>: both photoionisation and recombination rates linearly depends on n_e
- ii. <u>Delayed</u>: recombination decreases faster than photoionisation \rightarrow gas is over ionised with respect to ionisation equilibrium

Energy Balance (Kelvin/second):

Heating photonionisation+Auger Cooling gas emission (incl. lines) Compton photon-electron interaction Sum total temperature derivative $= \frac{dT}{dt}$

T=0 ks. Gas in equilibrium, $log(\xi) = 4$ \rightarrow Spectra are identical by construction

 $Log(n/cm^{3})=6.0$

 $Log(n/cm^{3})=10.0$

7.2

7.2 7.4

7.4

6.8

6.8

6.8

6.8

7.0

7.0

7.0

7.0

7.2

7.2

7.4

7.4

- $\log(n_e/cm^3) = 6$ - $\log(n_e/cm^3) = 10$
- T=0 ks. Gas in equilibrium, log(U) = 1.5 \rightarrow Spectra are identical by construction

T=2,8 ks. Mid-time of the rise and decay phase $\rightarrow \log(n_e/cm^3) = 10$: spectra are identical since flux is the same

 $\rightarrow \log(n_e/cm^3) = 6$: gas is overionised, opacity lowers for increasing time

- $\log(n_e/cm^3) = 6 \\ \log(n_e/cm^3) = 10$
- T=0 ks. Gas in equilibrium, log(U) = 1.5 \rightarrow Spectra are identical by construction

T=2,8 ks. Mid-time of the rise and decay phase $\rightarrow \log(n_e/cm^3) = 10$: spectra are identical since flux is the same

 $\rightarrow \log(n_e/cm^3) = 6$: gas is overionised, opacity lowers for increasing time

T=16 ks. Same flux as t=0.

$$\rightarrow \log(n_e/cm^3) = 10$$
 : spectrum equal to t=0

 $\rightarrow \log(n_e/cm^3) = 6$: overionised spectrum

Conclusions

Time-equilibrium ionisation only allows for a basic description of the intervening gas (ξ , N_H , v_out)

Time-evolving photionisation also constrains r, n! compute self-consistently the mass and energy flux

TEPID - Time-Evolving PhotoIonisation Device

Follows non-equilibrium, time-dependent gas ionisation:

X-ray absorption spectra

0.95

Energy (keV)

1.00

1.05

1.10

 10^{-2}

20

0.80

0.85

0.90

Compute time-resolved spectra for a set of input parameters (n, N_H, U) and compare with observations

Thank you for the attention!

Question/comments? alfredo.luminari@inaf.it

Bibliography:

Luminari A., Nicastro, F., Krongold Y., Piro L., Thakur A. L., 2022, A&A in prep. Thakur A. L., Piro L., Luminari A., Nicastro F. et al, 2022, A&A in prep. Luminari A., Nicastro F., Elvis M. et al, 2021, A&A, 646, A111 Luminari A., Tombesi F., Piconcelli E. et al, 2020, A&A, 633, A55 Krongold Y., Prochaska X., 2013, MNRAS, 774, 115 Krongold Y., Nicastro F., Brickhouse N.S. et al., 2003, ApJ, 597, 832 Nicastro F., Fiore F., Perola, G.C. et al., 1999, ApJ, 512, 184 Time e

TEPID model

TEPID application to GRBs

Absorption/emission relativistic effects

PHASE

Time evolving ionisation