PULSAR WIND NEBULAE: A REVIEW

Elena Amato

INAF- Osservatorio Astrofisico di Arcetri Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze

PULSAR WIND NEBULAE

SNRs WITH

CENTER FILLED MORPHOLOGY BROAD NON THERMAL SPECTRUM FLAT RADIO SPECTRUM $F_{\nu} \propto \nu^{-\alpha}, \quad \alpha < 0.5$

Multi-wavelength emission and size shrinkage

Jet-torus morphology in X-rays

Crab Nebula (composite)

G21.5-0.9 (Chandra)

3C58 (Chandra)

THE CRAB NEBULA

synchrotron radiation by relativistic particles in the nebular B field Inverse Compton scattering with local photon field

PARTICLES AND FIELD FROM ROTATIONAL ENERGY LOST BY PULSAR

B_{NEB} ≈100 µG

ONE ZONE MODELS

[Pacini & Salvati 1973, EA+ 2000, Bucciantini+ 2011....] (also Fraschetti & Pohl 2017 for log-parabola injection) PeV ELECTRONS

 $L_{NEB} \approx 30 \% \dot{E}$

EXTRAORDINARY

ACCELERATOR!

OPEN QUESTIONS

WHAT WE KNOW:

 \bullet most efficient accelerators in nature $\epsilon_{\rm acc} \lesssim 30\,\%$

• ENERGY FLUX THAT LEAVES THE PSR

$$\dot{E} = \kappa \dot{N}_{GJ} m_e \Gamma c^2 \left(1 + \frac{m_i}{\kappa m_e} \right) (1 + \sigma)$$
$$\sigma = \frac{B^2}{4\pi n_+ m_e c^2 \Gamma^2}$$

WE DO NOT KNOW:

- WHAT THE ACCELERATION MECHANISM(S) IS (ARE)

POSSIBILITIES DEPEND ON WIND COMPOSITION (IONS? κ?) WIND MAGNETIZATION (σ?)

IN PRINCIPLE BOTH DEPEND ON LOCATION

- HOW PARTICLES EVENTUALLY ESCAPE

BASIC PICTURE FOR YOUNG SYSTEMS

 $= P_{PWN} = \frac{\dot{E} t}{4\pi R_N^3}$ $\frac{\dot{E}}{4\pi cR_{TS}^2}$

 $R_{TS} = \left(\frac{v_N}{c}\right)^{1/2} R_N$

6

BASIC PICTURE FOR YOUNG SYSTEMS

$$R_{TS} = \left(\frac{v_N}{c}\right)^{1/2} R_N$$

DISSIPATION AND PARTICLE ACCELERATION AT TS

Adapted from Kennel & Coroniti 1984 [Del Zanna & Olmi 2017]

DYNAMICS AND RADIATION MODELING

[Komissarov & Lyubarsky 03,04; Del Zanna+ 04,06; Bogovalov+ 05;Camus+ 09; Volpi+ 08; Olmi+ 14,15,16;Porth+ 13,14] 😵

HADRONS IN CRAB?

 $Q_p(E) \propto \delta(E - m_p c^2 \Gamma)$

(EA & Arons 06; EA, Guetta, Blasi 03)

PWNE AND COSMIC RAYS

98% PROTONS AND NUCLEI 87% PROTONS 12% He 1% HEAVIER NUCLEI

2% ELECTRONS

0.1% ANTIMATTER (POSITRONS AND ANTI-PROTONS)

UHECRS FROM MAGNETARS

PINNE AS PEVATEONS

DETECTED PEVATRONS: LEPTONS OR HADRONS?

12 SOURCES DETECTED BY LHAASO ABOVE 100 TeV

Table 1 | UHE γ-ray sources

Table 1 UHE γ-ray sources					Cao+ 202	
Source name	RA (°)	dec. (°)	Significance above 100 TeV (× σ)	E _{max} (PeV)	Flux at 100 TeV (CU)	
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)	
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)	
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)	
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 -0.10 ^{+0.16}	0.73(0.17)	
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)	
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)	
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)	
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)	
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)	
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10) Cyanus	
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09) NO PSR	
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16) $G106.3+2.7$	

PeV ELECTRONS REQUIRE SUFFICIENT DROP AND $v_{flow} \sim c$

ALL SOURCES BUT ONE HAVE 1+ PSR IN THE FIELD

MAXIMUM ENERGY IN A PWN

$$|\vec{E}| = \eta_E |\vec{B}| \qquad \eta_E \approx v_{flow}/c$$

IN YOUNG ENERGETIC SYSTEMS ACCELERATION IS LOSS LIMITED

STRICT LIMIT FROM THE PSR POTENTIAL DROP $\Phi_{PSR} = \sqrt{\dot{E}/c}$

 $E_{max,abs} = e\eta_E \ \eta_B^{1/2} \sqrt{\dot{E}/c} \approx 1.8 \ PeV \ \eta_E \ \eta_B^{1/2} \ \dot{E}_{36}^{1/2}$

$$E_{max,abs} = e\eta_E B_{TS} R_{TS}$$
$$\frac{B_{TS}^2}{4\pi} = \eta_B \frac{\dot{E}}{4\pi R_{TS}^2 c}$$

LHAASO PEVATRONS AND PWNe

MAXIMUM ELECTRON ENERGY AS A FUNCTION OF PSR POTENTIAL DROP AND LHAASO SOURCES

de Ona Wilhelmi + 2022

EVOLVED PULSAR WIND NEBULAE

PWN EVOLUTION

SNR EXPANSION SLOWS DOWN + LARGE FRACTION OF ALL THE PULSARS BORN WITH HIGH KICK VELOCITY

COMPRESSED PWN OFFSET PW

REVERBERATION PHASE

RELIC NEBULAE

PSR MAY CROSS RS DURING COMPRESSION AND LEAVE A RELIC

BOW SHOCK NEBULAE: POSITRONS, JETS

JETS AND HALOES

X-ray 🗖

Cuităr nebula Guităr nebula Grodes + 1993, Wong + 2003 JETS CONSISTENT WITH SYNCHROTRON EMISSION $OF PARTICLES WITH <math>E \approx e \Phi_{PSR}$ IN A FEW X IOµG MAGNETIC FIELDBandiera 2008

[Pavan+2016, de Vries & Romani 2022,.....]

Geminga 0 Extended TeV halo [Abeysekara+ 2017] HALOS CONSISTENT WITH **ICS** EMISSION OF PARTICLES WITH $E \approx e \Phi_{PSR}$ IN A $\approx \mu G$ magnetic field AND $D \approx 10^{-2} D_{gal}$ [Abeysekara+ 2017, Lopez-Coto & Giacinti 2018, Lopez-Coto + 2021] BUT ALSO ALTERNATIVE PROPOSALS [e.g. Recchia+2021]

MAGNETIC FIELD AMPLIFICATION BY ESCAPIMG PARTICLES?

[Evoli, Linden, Morlino 18, Linden +22]

ENERGY DEPENDENCE OF THE ESCAPE

THE CR POSITRON EXCESS

BOW SHOCK PWNe EARLY SUGGESTED [Blasi & EA 11] AS BEST CANDIDATES TO EXPLAIN THE EXCESS

ALL LEPTON SPECTRUM

BS-PWNe INJECT $0.1\dot{E}$ AS A BROKEN POWER-LAW OF e⁺-e⁻ : $E_B \approx 500 \text{GeV}$

SUMMARY

- IN THE LAST DECADE, PWNe HAVE ENTERED THE REALM OF POTENTIAL CR SOURCES
- ONLY FIRMLY IDENTIIED PEVATRON IS CRAB, A PWN
- IF THE PEVATRONS IDENTIFIED BY LHAASO ARE LEPTONIC, THEN PULSARS ARE THE ONLY CANDIDATES IN THE GALAXY
- ON THE OTHER HAND IF THEY ARE HADRONIC PULSARS ARE NOT A PRIORI EXCLUDED!!!!!
- EVIDENCE FOR HADRONS IN PULSAR WINDS WOULD HAVE ENORMOUS IMPLICATIONS: NOT ONLY PULSAR PHYSICS, BUT MAYBE EVEN UHECRs...
- UNDERSTANDING HALO ESSENTIAL FOR CR TRANSPORT AND TO UNDERSTAND THE ORIGIN OF COSMIC LEPTONS
- FIRST QUESTION TO ANSWER IS HOW WIDESPREAD THEY ARE AND AT WHAT ENERGIES THEY SHOW