Millisecond pulsars in the ultra-fast optical domain

Filippo Ambrosino – CNOC XII

filippo.ambrosino@inaf.it

Collaborators: Alessandro Papitto, Piergiorgio Casella, Gianluca Israel, Arianna Miraval Zanon, Luigi Stella, Giulia Illiano, Matteo Imbrogno (INAF/OAR) Franco Meddi (Sapienza Università di Roma), Franco Leone (Università di Catania) Adriano Ghedina, Massimo Cecconi, Manuel Gonzales, Ennio Poretti (INAF/Fundacion Galileo Galilei) Sergio Campana, Paolo D'Avanzo (INAF/OAB)

Outline

- Millisecond pulsars (MSPs)
 - The recycling scenario
 - Rotation-powered MSPs
 - Accretion-powered MSPs
 - Transitional MSPs

Observational results

- ➢ SiFAP2@TNG
- Transitional ms pulsar PSR J1023+0038
- Accreting ms pulsar SAX J1808.4-3658
- RB pulsar PSR J2339-0533
- Intermittent accreting X-ray pulsar Aql X-1
- Other observations of MSPs

Open questions and future perspectives

Millisecond pulsar evolution: the recycling scenario

Letter

A millisecond pulsar

D. C. Backer, Shrinivas R. Kulkarni, Carl Heiles, M. M. Davis & W. M. Goss

Nature 300, 615-618 (16 December 1982) doi:10.1038/300615a0 **Download Citation**

Received: 22 November 1982 Accepted: 25 November 1982 Published: 16 December 1982

- \blacktriangleright Low magnetic fields (~ 10⁸ G)
- Often in globular clusters → very old objects
- Often in binary systems
 - → (recycled LMXB)

[Tauris & van den Heuvel, 2022]

MSPs

27/09/2022

Rotation-powered MPSs

4

Eclipsing binary MSPs: Black Widows & Redbacks

MSPs in binary systems sometimes show eclipses of their pulsed radio signal

- → Black widows (BWs): $M_c < 0.1 M_{\odot}$.
 - Semi-degenerate companion star
 - Eclipses cover a small fraction (< 20%) of the orbit
- → Redbacks (RBs): 0.1 $M_{\odot} < M_c < 0.7 M_{\odot}$.
 - Low-mass Main Sequence companion star
 - Eclipses cover a significant fraction (up to 80%) of the orbit

These systems can swing between rotation and accretion powered states in very short timescales (~ weeks)

Transitional millisecond pulsars (tMSPs) The three transitional pulsars discovered so far are RBs

Black widow pulsars: PSR B1957+20

- $P_{spin} \sim 1.61 \text{ ms}$
- $P_{orb}^{-1} \sim 9.17 \text{ hr}$
- Radio eclipses within 0.19 0.39 orbital phase
 - → near NS superior conjunction, no radio pulsations
- Eclipse length ~20% of the orbit
- $M_c \sim 0.022 M_{\odot}$
- Shows γ /X-ray pulsations

Redback pulsars: PSR J1048+2339

- $P_{spin} \sim 4.66 \text{ ms}$
- $P_{orb} \sim 6 hr$
- Radio eclipses within 0.02 0.49 orbital phase
 - → near NS superior conjunction, no radio pulsations
- Eclipse length ~47% of the orbit
- $M_c > 0.3 M_{\odot}$
- No significant γ /X-ray pulsations nor optical ones

[Yap et al., 2019]

Accretion-powered MPSs

Accreting X-ray MSPs

[Credit: NASA]

- ➢ Old systems (1-10 Gyr)
- > Low-mass companion stars (< $1 M_{\odot}$)
- Brightest X-ray sources in the Galaxy
- Powered by accretion
- Possible type I X-ray bursts
- Few (~20) of them show X-ray pulsations
 Accreting X-ray MSPs

Accreting X-ray MSPs

- Transient LMXB showing coherent ms X-ray pulsations
- Alternate between quiescence and outburst pahses

<u>**Quiescence</u>** → dominated by the thermal emission of the companion star <u>**Outburst**</u> → dominated by the accretion disk</u>

Main properties

- Low-mass companion stars (< 1 M_{\odot})
- Short orbital periods (P_{orb} < 1 d)
- NS spun-up to ms spin periods due to mass accretion
- Only ~20 systems known

Accreting MSPs: SAX J1808.4-3658

First discovered accretion-powered millisecond pulsar

- $P_{spin} \sim 2.5 \text{ ms}$
- $P_{orb} \sim 2 hr$
- $M_c \sim 0.4 M_{\odot}$
- X-ray/optical/UV pulsations
- Recurrent outbursts (1.6 3.3 yr)

Filippo Ambrosino - CNOC XII, Cefalù

Transitional MPSs

12

Filippo Ambrosino - CNOC XII, Cefalù

Transitional MSPs: the missing link

Accretion state

Accretion-power X-ray millisecond pulsars X-ray bright & radio quiet

Rot

Radio pulsar state

Rotation-power radio millisecond pulsars Radio loud & X-ray faint

Three confirmed tMSPs

The opposite twins: PSR J1023+0038 & XSS J12270-4859

	J1023 + 0038
P_{orb}	4.75 h
P_{spin}	$1.69 \mathrm{ms}$
Spin-down luminosity	$pprox 5.6 imes 10^{34} m ~erg/s$
Magnetic field	$\approx 9.6 \times 10^7 \text{ G}$
Pulsar age	$\approx 5.0 \text{ Gyr}$
Distance	1.37 kpc
Inclination	$42 \deg$
Mass ratio (q)	0.14
Companion mass	$0.24~{ m M}_{\odot}$
Companion Sp. Type	$G5 \rightarrow G9$

1.5

2

[Archibald et al., 2015]

27/09/2022

Filippo Ambrosino - CNOC XII, Cefalù

1.6

1.5

1.3

1.2

0

0.5

Pulse phase

Rate (s⁻¹)

X-ray variability in the sub-luminous disk state

Candidate tMSPs

RXS J154439.4-112820 [Bogdanov et al., 2015, 2016; Britt et al., 2017]

CXOU J110926.4-650224

[Coti Zelati et al., 2019, 2021]

4FGL J0407.7-5702

[Li et al., 2020; Miller et al., 2020]

[Strader et al., 2021; Kennedy et al., 2020; Deller et al., 2014]

Filippo Ambrosino - CNOC XII, Cefalù

Fast optical photometry: SiFAP2@TNG

SiPM/MPPC

(320 – 900 nm band)

- Single photon counting capability
- Fast rise time (~2-5 ns)
- PDE up to 40%@450 nm
- Low dark count (~2 kcps)
- Very good linearity with high count rates (up to 5 Mcps)
- 8 ns relative time resolution; ~10 µs absolute time accuracy

https://www.tng.iac.es/instruments/sifap2/

Nasmyth A focus

Observational results: PSR J1023+0038

nature astronomy LETTERS

Optical pulsations from a transitional millisecond pulsar

F. Ambrosino^{1,2}, A. Papitto^{3*}, L. Stella³, F. Meddi¹, P. Cretaro⁴, L. Burderi⁵, T. Di Salvo⁶, G. L. Israel³, A. Ghedina⁷, L. Di Fabrizio⁷ and L. Riverol⁷

First optical pulsations from a tMSP discovered!!!

[Ambrosino, Papitto et al. 2017, Nature Astronomy]

27/09/2022

Filippo Ambrosino - CNOC XII, Cefalù

Observational results: PSR J1023+0038

Common region for both the optical and X-ray pulsed emissions

talks

Check for updates

Rate (cts

nature astronomy

LETTERS https://doi.org/10.1038/s41550-021-01308-0

Optical and ultraviolet pulsed emission from an accreting millisecond pulsar

F. Ambrosino (1,2,3,22), A. Miraval Zanon (4,5,22), A. Papitto¹, F. Coti Zelati (5,6,7, S. Campana⁵, P. D'Avanzo⁵, L. Stella (1, T. Di Salvo (8, L. Burderi (9, P. Casella (1, A. Sanna⁹, D. de Martino (1, M. Cadelano^{11,12}, A. Ghedina¹³, F. Leone (14, F. Meddi (13, P. Cretaro¹⁵, M. C. Baglio^{5,16}, E. Poretti (15,13, R. P. Mignani^{17,18}, D. F. Torres (6,7,19, G. L. Israel (1, M. Cecconi¹³, D. M. Russell (16, M. D. Gonzalez Gomez (13, A. L. Riverol Rodriguez¹³, H. Perez Ventura¹³, M. Hernandez Diaz¹³, J. J. San Juan (13, D. M. Bramich¹⁶ and F. Lewis (12,02)

SAX J1808.4-3658

- → Orbital period: 2.01 hr
- → Pulsar spin period: 2.5 ms

NICER observations

➔ monitoring of SAX J1808 in outburst from August to September

27/09/2022

First optical/UV pulsations from an AMXP discovered!!!

MULTI-WAVELENGTH CAMPAIGN OF SAX J1808.4-3658

- ▶ High time resolution **TNG**/**SiFAP2** observation (PI. Papitto)
 - 320-900 nm band
 7 August 2019
 - 7 August 2019
 duration: 3300 s
- ▶ Hubble Space Telescope **STIS**/**NUV-MAMA** observation (PI. Miraval Zanon)
 - ▶ spectroscopic observation in TIME-TAG mode
 - 157-318 nm band
 28 August 2019
 - 28 August 2019
 duration: 2240 s
 - NICER light curve (7 August 2019-2 September 2019)

Filippo Ambrosino - CNOC XII, Cefalù

Observational results: PSR J2339-0533

(γ -ray/radio) RB pulsar with known orbital parameters

- Porb = $16683.7 \,\mathrm{s}$
- asin(i)/c = 0.611 lt-s

0.5

Rotational phase

• $v_{spin} = 346.713 \, \text{Hz}$

[Pletsch & Clark, 2015]

100

80

60

40

20

Weighted Counts

Waiting for **radio ephemeris** derived from the last (August 2022) **quasi-simultaneous observations** to fold optical data

Observational results: Aql X-1

Search for optical pulsations from MSPs with SiFAP2

- **RXS J154439.4-112820:** Candidate tMSP. Blind search on orbital parameters is still going on. We are trying to use genetic algorithms to search for pulsations (see Nicolò's talk)
- **PSR J1723-2837:** Eclipsing MSP with known radio orbital parameters. Candidate RB system with no γ -ray emission. Search on T_{asc} but no optical pulsations found.
- **PSR J1048+2339:** RB pulsar with known orbital parameters. Search on T_{asc} but no optical pulsations found.
- **PSR B1957+20 & PSR J1653-0158:** BW pulsars with known orbital parameters. Search on T_{asc} but no optical pulsations found so far. Analysis is still going on.
- **PSR J2129-0429:** RB pulsar with known orbital parameters. Many hours of observation, search on T_{asc} to be completed.

Open questions and future perspectives

- What is the process that produces the optical, UV and X-ray pulses in tMSPs and AMXPs?
- Do the optical/UV pulsations persist at the peak of the outburst, during the radio pulsar state or the quiescence?
- *Can rotation-powered and accretion-powered mechanisms coexist?*
- → Searching for optical and UV pulsations in other AMXPs (HST/XMM-Newton/TNG)
 → Optical observations of SAX J1808.4-3658 during quiescence with SiFAP2/TNG
 → Optical observations of binary millisecond radio pulsars (RBs and BWs)

- SiFAP4XP → new instrument for simultaneous polarimetric measurements with IXPE
- Feasibility study of nIR photometry → PRIN MUR
- **e-SiFAP** funded by **PNRR** → optical/nIR photopolarimetry

Back-up slides

Three states of tMSPs

First observational Results: Her X-1/HZ Her binary system

27/09/2022

Observational results: PSR J1023+0038

Spin period variations as a function of the orbital phase

SiFAP2/TNG

- \Rightarrow T exp: 3.3 ks
- \Rightarrow Time-tag mode (8 ns resolution)
- \Rightarrow Clear filter (320 900 nm)
- \Rightarrow Variable seeing: 0.5 0.9 arcsec
- \Rightarrow Airmass: 2.5
- \Rightarrow Moon: 47° angular distance

STIS(NUV-MAMA)/HST

- \Rightarrow T exp: 2.2 ks
- \Rightarrow Time-Tag mode (125 µs resolution)
- \Rightarrow G230L grating (165 310 nm)

NICER observations during the whole outburst

➔ measurement of SAX J1808.4-3658 ephemeris, crucial to reconstruct UV/optical pulse profiles

Table 1 X-ray, UV and optical ephemeris of SAX J1808.4–3658 during the August 2019 outburst				
Parameter	X-ray	UV	Optical	
Right ascensionª (α, J2000)	18 h 08 m 27.62 s	-	-	
Declination ^a (δ, J2000)	-36° 58′ 43.3″	-	-	
Validity range (MJD)	58702-58726			
Reference epoch T_{ref} (MJD)	58715.0	-	-	
Time system	TDB	TDB	TDB	
Planetary ephemeris	DE405	DE200	DE405	
Spin frequency ($\nu(T_{ref})$) (Hz)	400.975209660(9)	-	-	
Spin frequency ($\nu(T_{TNG})$) ^b (Hz)	400.975210179(63)	-	400.975225(72) ^d	
Spin frequency ($\nu(T_{HST})$) ^c (Hz)	400.975209618(36)	400.97517(10) ^d	-	
Spin frequency first derivative ($\dot{\nu}$) (Hz s ⁻¹)	$-(2.43 \pm 0.21) \times 10^{-13}$	-	-	
Spin frequency second derivative ($\ddot{\nu}$) (Hz s ⁻²)	$(4.9 \pm 1.1) \times 10^{-19}$	-	-	
Orbital period ($P_{\rm b}$) (s)	7249.1572(14)	-	-	
Time of ascending node (T^*) (MJD)	58715.0220987(32)	-	-	
Projected semi-major axis (light seconds)	0.0628099(35)	-	-	
χ^2 /d.o.f.	550/378	-	-	

^aValues taken from ref. ³⁹, ^bObservation carried out on 7 August 2019 ($T_{Start}^{HST} = 58702.9382176 MJD(utc)$) with SiFAP2/TNG. ^cObservation carried out on 28 August 2019 ($T_{Start}^{HST} = 58723.9080081 MJD(utc)$) with STIS/HST. ^dObtained with the epoch folding search technique. d.o.f., degrees of freedom; MJD, modified Julian date; TDB, barycentric dynamical time.

First optical/UV pulsations from an AMXP discovered!!!

Possible models

Cyclotron emission?

(matter accreting onto the polar caps of the NS) → not powerful enough to explain pulsed optical luminosity!

Thermal emission?

(from hot concentric rings surrounding the polar caps of NS)

→ Fitting with a blackbody gives a temperature ≥ 1 MeV!

Reprocessing?

(the emission region of optical/UV pulsations must be $< f c P_{spin} \sim 350$ km)

→ Fitting with a blackbody gives a temperature ≥ 1 MeV!

Our interpretation for Optical & UV pulsed emission

Star-disk interaction with high magnetic diffusivity in the disk can open the NS field lines, causing:

- the increase in the strength of the relativistic pulsar wind
- a high efficiency in the rotation-powered emission
- the observed spin-down during outbursts
 - Filippo Ambrosino CNOC XII, Cefalù

• UV/optical pulsed emission from rotation-powered mechanism

Observational results: Lunar Occultations

QR Gem: V = 7.65

Occultation on 13th May 2021 @21:37:43.028 UT

Mag drop: 3.5

Moon Phase: 15%

Filter: H α (800 kcps down to 50 kcps)

Angular size: 2.05(1) mas (UL) with an empirical estimate of 1.7(1) mas

HD103740: V = 7.60, double star

Occultation on 21th May 2021 @20:23:48.617 and @20:23:49.066 UT Moon Phase: 73%

Filter: H α (7100 kcps down to 6600 kcps and saturation) S/N: 3

Observational results: an asteroidal Occultation

Observational results: Fast Optical Bursts (FOBs)

Observational results: 3FGL J1544.6-1125

A candidate transitional millisecond pulsar

- → Light curve similar to PSR J1023+0038
- \rightarrow Unknown projection of semi-major axis (a·sin(i)/c)
- → $P_{orb} = 20868.7 \text{ s}$
- → No X-ray/radio pulsations ever detected

SiFAP acquisition on April 2018

- → Restricted blind search on T_{asc} and $a \cdot sin(i)/c$
 - Found a not significant peak at ~ 2.1 ms spin period
- \rightarrow Not reproducible result in further observations

Searching for optical pulsations...

Need for a huge amount of

38

→ computational resources

→ computational time

Work in progress to extend the blind search on

