ULTRALUMINOUS X-RAY SOURCES - I BROADBAND AND TIMING PROPERTIES

MATTEO BACHETTI (INAF-OA CAGLIARI)

REGIONE AUTÒNOMA DE SARDIGNA REGIONE AUTONOMA DELLA SARDEGNA

GENERAL PROPERTIES

DEFINITION

Ultraluminous X-ray sources are offnuclear, point-like X-ray sources exceeding the (isotropic) Eddington limit for a stellar-mass Black Hole (StBH)

 $L_{ULX} > 3x10^{39} \text{ erg/s}$

DEFINITION

Ultraluminous X-ray sources are *offnuclear, point-like* X-ray sources exceeding the (isotropic) Eddington limit for a stellar-mass Black Hole (StBH)

 $L_{ULX} > 3x10^{39} \text{ erg/s}$

Image from Zolotukhin et al. ApJ 817, 88, 2016.

FIG. 2.- IPC contour map of M81 overlaid on the POSS O plate. The first contour is at 2 o above the field background. Discrete sources detected in the IPC image are indicated by an X followed by a number. Data were smoothed with a Gaussian with $\sigma_G = 35^\circ$. The equivalent Gaussian sigma of a point source in this map is o ~ 57".

EINSTEIN -Fabbiano, ApJ, 325, 544–562, 1988.

FIG. 23.—Finding chart for the ULXs in NGC 1313.

ROSAT -Liu & Bregman, ApJ, 642 171–187, 2006.

ULTRALUMINOUS X-RAY SOURCES IN EXTERNAL GALAXIES

A. R. KING,¹ M. B. DAVIES,¹ M. J. WARD,¹ G. FABBIANO,² AND M. ELVIS² Received 2001 February 22; accepted 2001 April 4; published 2001 April 30

ABSTRACT

We investigate models for the class of ultraluminous nonnuclear X-ray sources (i.e., ultraluminous compact X-ray sources [ULXs]) seen in a number of galaxies and probably associated with star-forming regions. Models in which the X-ray emission is assumed to be isotropic run into several difficulties. In particular, the formation of sufficient numbers of the required ultramassive black hole X-ray binaries is problematic, and the likely transient behavior of the resulting systems is not in good accord with observation. The assumption of mild X-ray beaming

SUPER-EDDINGTON FLUXES FROM THIN ACCRETION DISKS?

MITCHELL C. BEGELMAN¹

JILA, University of Colorado, 440 UCB, Boulder, CO 80309-0440; mitch@jila.colorado.edu Received 2002 January 22; accepted 2002 February 28; published 2002 March 6

ABSTRACT

Radiation pressure-dominated accretion disks are predicted to exhibit strong density inhomogeneities on scales much smaller than the disk scale height as a result of the nonlinear development of photon-bubble instability. Radiation would escape from such a "leaky" disk at a rate higher than that predicted by standard accretion disk

Chandra High-Resolution Camera observations of the luminous X-ray source in the starburst galaxy M82

P. Kaaret,^{1*} A. H. Prestwich,¹ A. Zezas,¹ S. S. Murray,¹ D.-W. Kim,¹ R. E. Kilgard,¹ E. M. Schlegel¹ and M. J. Ward² values, which suggests that it is a compact object and not a supernova of

remnant. There is no significant short-term variability within the observations. Dynamical friction and the off-centre position place an upper bound of $10^5 - 10^6 M_{\odot}$ on the mass of the object, depending on its age. The X-ray luminosity suggests a compact object mass of at least 500 M_☉. Thus the luminous source in M82 may represent a new class of compact object with a mass intermediate between those of stellar-mass black hole candidates and supermassive black holes.

FIG. 23.—Finding chart for the ULXs in NGC 1313.

Curvature above ~10 keV?

NuSTAR: above 10 keV, ULX spectra are curved

NuSTAR: above 10 keV, ULX spectra are curved

MB+ *ApJ* **778**, 163 (2013). Walton+ ApJ 779, 148 (2013). Walton+ ApJ 793, 21 (2014). Rana+ ApJ 799, 121 (2015). Walton+*ApJ* **799**, 122 (2015). Walton+ ApJ 806, 65 (2015) (...)

MB et al. ApJ, **778**, 163, 2013. 1.5 IC 342 X1 0.5 IC 342 X2 10 Energy (keV) nergy (keV) Energy (keV) DISKBB+CUTOFFPL KDBLUR2(REFLIONX) DISKBB+COMPTT DISKBB+COMPTT (kTe=50 keV) 10 E (keV)

Toy scenario: Soft excess: outflow Hard thermal component: inner disk Variability imprinted by outflow

MIGHTY MICE

NASA finds 'Mighty Mouse' pulsar brighter than 10 million SUNS

The discovery of a new unusually bright dead star leads astronomers to question assumptions about a type of cosmic radiation -- and pulsars themselves.

BY MICHAEL FRANCO / OCTOBER 8, 2014 4:13 PM PD

MB+2014, Nature: An ultraluminous X-ray source powered by an accreting neutron star

NuSTAR PSF

M82 X-I

5 99

PULX COMPARISON

Source	Pspin	Lx,peak (10 ³⁹ erg/s)	Discovery Reference(s)	
NGC5907 ULX1	1.1	100	Israel+17b	
M82 X-2	1.4	20	Bachetti+14	
NGC7793 P13	0.4	15	Furst+16, Israel+17a	
NGC1313 X-2	1.5	10	Sathyaprakash+19	
M51 ULX-7	2.8	10	Rodriguez-Castillo+21	
NGC300 ULX1	126-20	4	Carpano+18	
Swift J0243.6+6124	9.8	2	Kennea+17	

PULX COMPARISON

	P.F. (%)	f (Hz)	ḟ (10⁻¹º Hz/s)	Porb (d)	Donor	Notes
NGC 5907 ULX1	~15	0.7 – 0.9	-20 — +60	5?		
M82 X-2	>20	0.7	-0.5 — +1	2.52	O/B? >5 Mo	
NGC 7793 P13	~20	2.4	~2	64	BSG?	
NGC 1313 X-2	5	0.68	6-20?	?		Only detected in <30 ks
M51 ULX-7	5-20	0.36	0.2 — 1.2	2	MS?	
NGC 300 ULX	~90	0.008-0.05	9	many?	RSG?	
Swift J0243.6+6124	50	0.1		27	Be	
SMC X-1		1.4	0.23	3.9	B0 ~17 Mo	
LMC X-4		0.07	~1	1.4	08 ~16 Mo	

Pintore+17, ApJ 836, 113

CYCLOTRON-LIKE FEATURES

Brightman+18 Nat. Ast. 2, 312 Walton+18 ApJL 857, L3

Energy (keV)

NGC 300 ULXI

Swift |0243.6+6124

Kong+22, ApJL 933, 3

SUPER-ORBITAL PERIODS

TWO SUB-POPULATIONS EMERGE?

I. Long orbit PULXs (NGC 300 ULXI, NGC 7793 PI3)

- ~tens of days orbits. Supergiant companions
- Monotonic Spin up
- $\dot{\nu}$ independent of observed flux (including flux drops)
- Lower average luminosity?

2. **Short orbit PULXs** (M82 X-2, M51 ULX-7, NGC 5907 X-1?)

- ~few days orbits. (Late) main sequence donors?
- Spin up alternate with spin down (not in M51, up to now)
- $\dot{\nu}$ changes with observed flux
- Higher average luminosity?

HOW DOYOU FEED THFM?

- point at short-lived accretion phases
- (Beaming is often an ad-hoc parameter)

Simulations with MESA (Fragos+15, Quast+19, Misra+20) seem to

MEASURING (DIPOLAR) B INDIRECTLY?

 $R_{\rm M} \approx \xi 10^8 \, {\rm cm} \left(\frac{B}{10^{12} {\rm G}}\right)^{4/7} \left(\frac{\dot{M}}{\dot{M}_{\rm Edd}}\right)^{-2/7}$ $R_{\rm co} = \left(\frac{GMp^2}{4\pi^2}\right)^{1/3}$ R_{co}

 $R_{\rm M} \approx \xi 10^8 \, {\rm cm} \left(\frac{B}{10^{12} {\rm G}}\right)^{4/7} \left(\frac{\dot{M}}{\dot{M}_{\rm Edd}}\right)^{-2/7} R_{\rm co} = \left(\frac{GMp^2}{4\pi^2}\right)^{1/3}$ R_M R_{co} "Slow rotator"

 $R_{\rm M} \approx \xi 10^8 \,\mathrm{cm} \left(\frac{B}{10^{12} \mathrm{G}}\right)^{4/7} \left(\frac{\dot{M}}{\dot{M}_{\rm Edd}}\right)$ $R_{\rm co} = \left(\frac{GMp^2}{4\pi^2}\right)^{1/3}$ R_{co} R_{M} Spin down and/or "Propeller regime"

 $R_{\rm M} \approx \xi 10^8 \,\mathrm{cm} \left(\frac{B}{10^{12} \mathrm{G}}\right)^{4/7} \left(\frac{\dot{M}}{\dot{M}_{\rm Edd}}\right)$ $R_{\rm co} = \left(\frac{GMp^2}{4\pi^2}\right)^{1/3}$ RRco

 $R_{\rm M} \approx \xi 10^8 \, \mathrm{cm} \left(\frac{B}{10^{12} \mathrm{G}}\right)^{4/7} \left(\frac{m}{\dot{M}_{\rm Edd}}\right)$ $= \left(\frac{GMp^2}{4\pi^2}\right)^{1/3}$ Rotation Period Mass accretion rate Mass RRco

- NGC 300: monotonic spin up
- Compatible with standard NS torque formulas far from equilibrium

SLOW ROTATOR

- spin up
- incompatible with "slow rotator"

 $R_{\rm M} \approx \xi 10^8 \, \mathrm{cm} \left(\frac{B}{10^{12} \mathrm{G}}\right)^{4/7} \left(\frac{m}{\dot{M}_{\rm Edd}}\right)$ $= \left(\frac{GMp^2}{4\pi^2}\right)^{1/3}$ Rotation Period Mass accretion rate Mass RRco

 $R_{\rm M} \approx \xi 10^8 \, \mathrm{cm} \left(\frac{B}{10^{12} \mathrm{G}}\right)^{4/7} \left(\frac{m}{\dot{M}_{\rm Edd}}\right)$ $= \left(\frac{GMp^2}{4\pi^2}\right)^{1/3}$ Rotation Period Mass accretion rate Mass RRco

 $R_{\rm M} \approx \xi 10^8 \, \mathrm{cm} \left(\frac{B}{10^{12} \mathrm{G}}\right)^{4/7} \left(\frac{m}{\dot{M}_{\rm Edd}}\right)$ $= \left(\frac{GMp^2}{4\pi^2}\right)^{1/3}$ Rotation Period Mass accretion rate Mass RRco

WHAT IS THE MASS ACCRETION RATE?

WHAT IS THE MASS ACCRETION RATE?

Estimates from luminosity:

• $L \sim \eta c^2 \dot{M}$ (proportional to luminosity, $\eta \sim 0.15$ for a NS): but... highly super Eddington. -> estimated B often incompatible with accretion on star (due to propeller)

WHAT IS THE MASS ACCRETION RATE?

Estimates from luminosity:

• $L \sim \eta c^2 \dot{M}$ (proportional to luminosity, $\eta \sim 0.15$ for a NS): accretion on star (due to propeller)

hoc and does not explain sinusoidal profiles

but... highly super Eddington. -> estimated B often incompatible with

SUPER-EDDINGTON LUMINOSITY AS AN EFFECT OF BEAMING

HUL

HARD

SOFT

HARD

SOFT

King 2009 MNRAS **320**, L45

$$b \sim \frac{73}{\dot{m}^2}$$

HUL and BD spectra: face-on SUL spectra: inclined Sutton+2013, **MNRAS** 435,1758 Gúrpide+2021, arXiv:210605708 Outflows: Pinto+2016, Nat. **533**, 64

SUL

SUPER-EDDINGTON LUMINOSITY FROM HIGH MAGNETIC FIELD

Basko & Sunyaev 1976, MNRAS 175, 395 Mushtukov+2015, MNRAS, 454, 2539 High B alters the Thomson cross-section

Brice+2021, MNRAS 504, 701 multipolar components allow to avoid the propeller regime

The signal is beamed

King & Lasota '16 MNRAS, 458, 10 King & Lasota '20 MNRAS, 494, 3611

AN ONGOING FRIENDLY DEBATE

High magnetic field

Eksi+15, MNRAS 448, 40 Mushtukov+15, MNRAS 454, 2539 Tsygankov+16, MNRAS **457**, 1101 Dall'Osso+16, MNRAS 457, 3076 and many others

The signal is beamed

King & Lasota '16 MNRAS, 458, 10 King & Lasota '20 MNRAS, 494, 3611

AN ONGOING FRIENDLY DEBATE

High magnetic field

Eksi+15, MNRAS 448, 40 Mushtukov+15, MNRAS 454, 2539 Tsygankov+16, MNRAS **457**, 1101 Dall'Osso+16, MNRAS 457, 3076 and many others

FRANCIS FUKUYAMA

POLITICAL ORDER

AND ORBITAL

DECAY

From the Industrial Revolution to the Globalisation of Democracy

ORBITAL DECAY

POSSIBILITY: MEASURE MASS EXCHANGE

 Implied highly super-Eddington mass transfer should produce orbital shrinking (assuming Roche Lobe overflow)

 $\dot{P}_{\rm orb} \sim -3.5 \times 10^{-8} \left(\frac{M_p}{1.4M_{\odot}}\right)^{-1} \left(\frac{-\dot{M}_c}{100\dot{M}_{\rm Edd}}\right)$

• For M82 X-2, hundreds of seconds of orbital drift over years. MEASURABLE!

MEASURING THE ORBITAL DECAY

 $\delta T_{\rm asc}(t) = \frac{1}{2} \frac{\dot{P}_{\rm orb}}{P_{\rm orb}} \left(t - t_0\right)^2$

Extreme mass transfer

Spin equilibrium

MASS TRANSFER?

$B_{\rm dip} \sim 5 \cdot 10^{13} \,\mathrm{G}$

OPEN QUESTIONS

- How short-lived is this accretion regime? (e.g. Fragos+2015, Quast+2019, Misra+2020)
- What is the mass of the donor star? And the accretor?
- What about magnetic field configuration and decay?
- Can they be progenitors of binary MSP? Binary BHs? GW sources? FRBs?? SMBH seed?
- Is the observed orbital decay due to mass transfer?

TAKE - HOME MESSAGE

- (P)ULXs are a gift that keeps on giving
- Extreme luminosity, extreme spin up, extreme orbital decay
- BUT a lot still to be learned: binary population studies do not seem to like them
- MOAR observations!

HEX-P: 1-slide summary a spectacular ULX machine

Galactic Center

Simulation laxies

hendrics.readthedocs.io

stingray.readthedocs.i

www.astropy.org

tempo2

psrsoft/tempo2

Stingray

The Next Generation Spectral-Timing Software

