Constraining Jet Properties in the Black-Hole Transient MAXI J1820+070 through

Fast Multi-Wavelength Variability

A. Tetarenko, PC, et al. 2021

Piergiorgio Casella (INAF OA-Roma) with A. Tetarenko (Texax Tech Univ.) and key help from J. Miller-Jones (Curtin Univ.), G. Sivakoff (Alberta Univ.), F. Vincentelli (IAC), J. Paice (Southampton Univ.), et al.

Pg Casella

Disk-Jet connection

 Tracking propagating fluctuations

credits: Gandhi, Bachetti

Fast Multi-λ Variability

2/12

Pg Casella

Tracking fluctuations through the JET

We need: + a bright jet + long wavelengths

Pg Casella

3/12

MAXI J1820+70

+ One of the brightest BH transients
+ Discovery outburst in 2018 - highly variable - bright jet
+ Dinamically-confirmed BH (M_{BH} ~ 8.5 M_{sun})
+ Radio parallax distance ~ 3 kpc (consistent with Gaia)

B. You+21

The ultimate campaign

A. Tetarenko, PC, et al. 2021

Jet properties in MAXI J1820 w. multi- λ variability

5/12

Strong jet variability A. Tetarenko, PC, et al. 2021

Broad-band SED

bright jet detected

Fourier Power Spectra

highly variable

Jet properties in MAXI J1820 w. multi- λ variability

Strong jet variability

A. Tetarenko, PC, et al. 2021

Jet properties in MAXI J1820 w. multi- λ variability

7/12

Strong jet variability A. Tetarenko, PC, et al. 2021

VLA and ALMA too far apart

jet filter to recover correlation

(de	lay	and	smooth)
-----	-----	-----	---------

Frequency bands Compared (GHz)	Time lag (min)	$\sigma_{ m smooth}$ (s)	$z_{\rm smooth} \times 10^{11} (\rm cm)^a$
343.5/25.9	$4.5^{+0.2}_{-0.4}$	$6.5^{+0.6}_{-0.6}$	$0.5\substack{+0.1\-0.1}$
343.5/20.9	$5.5^{+1.2}_{-1.0}$	$9.2^{+1.6}_{-1.2}$	$0.7\substack{+0.2 \\ -0.2}$
343.5/11.0	$12.6^{+1.2}_{-1.3}$	$13.8^{+2.1}_{-1.6}$	$1.1^{+0.3}_{-0.2}$
343.5/8.5	$15.7^{+1.7}_{-1.8}$	$17.7^{+3.1}_{-2.1}$	$1.4^{+0.4}_{-0.3}$
343.5/7.45	$16.7^{+2.2}_{-1.7}$	$21.8^{+3.8}_{-2.4}$	$1.8^{+0.5}_{-0.4}$
343.5/5.25	$23.6^{+4.5}_{-3.1}$	$37.5^{+8.6}_{-4.2}$	$3.1^{+1.0}_{-0.7}$

Pg Casella

Strong jet variability A. Tetarenko, PC, et al. 2021

Jet properties in MAXI J1820 w. multi- λ variability

9/12

Modeling A. Tetarenko, PC, et al. 2021

$$F_{\nu} = \frac{5.1}{4\pi D^2} z_{\nu}^{17/8} \sin i^{7/8} \phi^{9/8} C_0 C_1^{-7/8} \delta^{1/4} \left(\frac{\nu}{\nu_{\text{ref}}}\right)^{\alpha}$$

(Heinz 06 + non-flat term)

$$C_0 = (2.4 \times 10^{-17}) \left(\frac{2\xi_B^{3/4} f}{1+\xi_p}\right) \left(\frac{2}{1+\xi_B}\right)^{7/4} \left(\frac{8.4 \,\text{GHz}}{\nu}\right)^{1/2} \equiv (8.4)^{1/2} X_0 \nu^{-1/2} \,\text{erg s}^{-1} \,\text{cm}^{-3} \,\text{Hz}^{-1/2}$$

$$C_1 = (2.3 \times 10^{-12}) \left(\frac{2\xi_B}{1+\xi_p}\right) \left(\frac{2}{1+\xi_B}\right)^2 \left(\frac{8.4 \,\text{GHz}}{\nu}\right)^3 f \equiv (8.4)^3 X_1 \nu^{-3} \,\text{cm}^{-1}$$

$$W = 2 \left[4p\Gamma^2 \beta c \pi (\phi z)^2 \right] \text{ erg s}^{-1} \qquad p = \sqrt{\frac{\sin i}{2C_1 \delta^2 \phi z_\nu}} \left(\frac{z}{z_\nu} \right)^{-2} \qquad z_\nu = \left(\frac{W}{8\Gamma^2 \beta c \pi \phi^{3/2}} \right)^{2/3} \left(\frac{2X_1 (8.4)^3 \delta^2}{\sin i} \right)^{1/3} \nu^{-1} \text{ cm}$$

$$f_{\text{break}} = \frac{\beta c \delta}{z_{\nu}} \qquad \qquad \tau_{\text{lag}} = z_{\text{norm}} \left(\frac{1}{\nu_{\text{low}}} - \frac{1}{\nu_{\text{high}}} \right) \frac{(1 - \beta \cos i)}{\beta c} s$$

10/12

simplified assumption

.....

Pg Casella

Modeling (key points) A. Tetarenko, PC, et al. 2021

+ Blandford & Konigl 79 (Heinz 06)

11/12

Pg Casella

- + Additional term accounting for non flat spectrum
- + PDS break scales with jet length at given λ
- + Solve for jet power, opening angle, speed

Results & Conclusions

A. Tetarenko, PC, et al. 2021

- + Jet scale consistent with estimates for transient jet
- + Γ ~ 7 (+/-1) fastest compact jet so far (but brightest)
- + P_{jet} ~ 6 10³⁷ erg/s ~60% L_{1-100keV} (possible feedback?)
- + Leptonic jet, otherwise P_{jet} >> L_{1-100keV}
- Opening angle α ~ 0.45°
- + Freceding jet ~ 0.2 Fapproaching jet

(possible feedback?) (but Carotenuto?) (among narrowest) (plans to look for it)

Spectral and timing together - Self consistent picture Variability: key physical ingredient - useful tool The technique is clearly powerful -> more models (...but campaigns are **very** hard to build...)