

## A deep XMM-Newton observation of the X-Persei-like binary system CXOU J225355.1+624336

#### N. La Palombara (IASF Milano) L. Sidoli, P. Esposito, G. L. Israel, G. A. Rodriguez-Castillo



CNOC XII Cefalù 28/09/2022





## The BeXB pulsar CXOU J225355.1+624336

- Discovered by *ROSAT* and included in both the RASS FSC (Voges et al. 2000; 1RXS J225352.8+624354) and the WGA Catalogue (White, Giommi & Angelini 1994; 1WGA J2253.9+6243)
- X-ray counterpart of the INTEGRAL source IGR J22534+6243 (Krivonos et al. 2012)
- 47-s pulsation discovered and reported independently by Halpern (2012) and (within the CATS@BAR project) by Israel & Rodriguez (2012)
- Position consistent with that of the infrared source 2MASS J22535512+6243368 (Halpern 2012; Landi et al. 2012)
- Observed with *Swift* in 2006, *Chandra* in 2009, and *NOT* in 2012 (Esposito et al. 2013)

#### Ų

- Classification of the optical counterpart as a B0-1III-Ve star @  $d \sim 4-5$  kpc
- $P_{s,ROSAT} = 46.406(5) \text{ s}, P_{s,Swift} = 46.6145(5) \text{ s}, P_{s,Chandra} = 46.670(4) \text{ s} \Rightarrow \dot{P}_s \approx 5.3 \text{ x} 10^{-10} \text{ s} \text{ s}^{-1}$
- $f_{\rm X} \sim (2-4) \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1} \Longrightarrow L_{\rm X} \sim \text{a few } 10^{34} \text{ erg s}^{-1}$

#### candidate member of the class of persistent, X-Per-like BeXBs



CNOC XII – Cefalù – 28/09/2022

INAF



Source properties

#### The BeXB pulsar CXOU J225355.1+624336





N. La Palombara – IASF Milano

3



#### XMM-Newton observation of CXOU J225355

#### Analysis of an archival observation of ~30 ks, performed on February 28<sup>th</sup>, 2014 (MJD 56716) ↓ extension of the X-ray history of the source to more than two decades

#### Results reported in La Palombara et al. 2021, A&A 649

| Instrument | Filter           | Mode                     | Time resolution | Net exposure time<br>(ks) | Extraction radius (arcsec) | Net count rate (counts $s^{-1}$ )                               |
|------------|------------------|--------------------------|-----------------|---------------------------|----------------------------|-----------------------------------------------------------------|
| pn<br>MOS1 | Thin 1<br>Thin 1 | Full frame<br>Full frame | 73 ms<br>2.7 s  | 20.4<br>25.1              | 30<br>30                   | $\begin{array}{c} 0.43 \pm 0.03 \\ 0.134 \pm 0.002 \end{array}$ |
| MOS2       | Thin 1           | Full frame               | 2.7 s           | 25.2                      | 30                         | $0.131 \pm 0.002$                                               |
| RGS1       | _                | Spectroscopy             | 4.8 s           | 29.0                      | _                          | —                                                               |
| RGS2       | —                | Spectroscopy             | 9.6 s           | 29.0                      | —                          | _                                                               |

#### $\downarrow$

EPIC net exposure time of 20-25 ks after removal of time intervals affected by SP flares



CNOC XII – Cefalù – 28/09/2022

4



## XMM-Newton observation of CXOU J225355: timing analysis

- $P_{\rm spin} = 46.753 \pm 0.003 \, {\rm s}$
- Pulse profile with 3 peaks and energy dependence:
  - o first and last peak more evident at low energies
  - middle peak more evident at high energies
- Flux variability almost constant with energy: PF = 40-45 %





N. La Palombara – IASF Milano

5



EPIC time-averaged continuum spectra described with 4 different emission models:

- 1) 2 single-component non-thermal models
- absorbed power-law (PL) with a partial covering fraction absorption (TBPCF)
- absorbed cut-off power-law (CPL)
- 2) 2 double-component models with a PL + thermal component
- PL + blackbody (BB)
- PL + collisionally ionized gas (APEC)







EPIC time-averaged continuum spectra described with 4 different emission models:

- 1) 2 single-component non-thermal models
- absorbed power-law (PL) with a partial covering fraction absorption (TBPCF)
- absorbed cut-off power-law (CPL)
- 2) 2 double-component models with a PL + thermal component
- PL + blackbody (BB)
- PL + collisionally ionized gas (APEC)

#### ↓

- 1) all models provided an equally good fit
- 2) additional thermal component significant at 99 % c.l. in both the double-component models, with a neglibigle probability that it is spurious
- 3) weak positive residuals at E = 1.68 and 6.16 keV (and 0.98 keV for the CPL):
- features significant at 99 % c.l. when described with a Gaussian model
- Monte-Carlo simulations (SIMFTEST) ⇒ high probability that these features are spurious



CNOC XII – Cefalù – 28/09/2022

INAF







N. La Palombara – IASF Milano

11



| Model<br>parameter                                             | _<br>Unit                                                     | TBPCF×PL<br>value      | CPL<br>value           | PL+BB<br>value         | PL+APEC<br>value    |
|----------------------------------------------------------------|---------------------------------------------------------------|------------------------|------------------------|------------------------|---------------------|
| TBABS N <sub>H</sub>                                           | $\times 10^{22}  \mathrm{cm}^{-2}$                            | $2.0^{+0.3}$           | $1.6 \pm 0.2$          | $4.1 \pm 0.4$          | $4.0^{+0.3}$        |
| TBPCF $N_{\rm H}$                                              | $\times 10^{22}  \mathrm{cm}^{-2}$                            | $6.7^{+2.1}_{-1.7}$    | _                      | _                      |                     |
| TBPCF covering fraction                                        | _                                                             | $0.63^{+0.07}_{-0.08}$ | _                      | _                      | _                   |
| Г                                                              | _                                                             | $1.66^{+0.14}_{-0.13}$ | $0 \pm 0.3$            | $1.50^{+0.09}_{-0.08}$ | $1.49\pm0.08$       |
| $E_{\rm cut}$                                                  | keV                                                           | _                      | $4.0^{+1.1}_{-0.8}$    | _                      | _                   |
| $Flux_{CPL/PL}$ (0.5–10 keV) <sup>(a)</sup>                    | $\times 10^{-12} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | $6.4^{+0.9}_{-0.6}$    | $3.88^{+0.16}_{-0.15}$ | $5.5^{+0.4}_{-0.3}$    | $5.5 \pm 0.3$       |
| $kT_{\rm BB \ or \ APEC}$                                      | eV                                                            | _                      | _                      | $120 \pm 10$           | $140^{+30}_{-20}$   |
| $R_{ m BB}^{(b)}$                                              | km                                                            | _                      | _                      | $100^{+80}_{-50}$      | _                   |
| N <sub>APEC</sub>                                              | $\mathrm{cm}^{-5}$                                            | _                      | _                      | _                      | $0.6^{+1.2}_{-0.4}$ |
| Flux <sub>BB or APEC</sub> $(0.5-10 \text{ keV})^{(a)}$        | $\times 10^{-11} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | _                      | _                      | $2.9^{+3.0}_{-1.5}$    | $22^{+21}_{-14}$    |
| Flux <sub>BB or APEC</sub> /Flux <sub>TOT</sub> (0.5–10 keV)   | _                                                             | _                      | _                      | 84.0 %                 | 97.6 %              |
| Flux <sub>BB or APEC</sub> /Flux <sub>TOT</sub> (0.01–100 keV) | _                                                             | _                      | _                      | 78.5~%                 | 99.6 %              |
| Unabsorbed flux (0.5–10 keV)                                   | $\times 10^{-11} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | $0.64^{+0.09}_{-0.06}$ | $0.39^{+0.01}_{-0.02}$ | $3.4^{+3.0}_{-1.5}$    | $23^{+20}_{-14}$    |
| Luminosity (0.5–10 keV) <sup>(b)</sup>                         | $\times 10^{34}  {\rm erg \ s^{-1}}$                          | $1.8^{+0.3}_{-0.2}$    | $1.10 \pm 0.04$        | $10^{+8}_{-5}$         | $60_{-40}^{+60}$    |
| $\chi^2_{\nu}$ /d.o.f.                                         | _                                                             | 0.95/920               | 0.96/921               | 0.95/920               | 0.96/920            |

<sup>(a)</sup>Corrected for absorption. <sup>(b)</sup>Assuming a source distance of d = 5 kpc.

# $\downarrow$ equally good fit with all models



N. La Palombara – IASF Milano

9



INAF

#### XMM-Newton observation of CXOU J225355: EPIC spectral analysis

| Model<br>parameter                                             | _<br>Unit                                                          | TBPCF×PL<br>value      | CPL<br>value           | PL+BB<br>value         | PL+APEC<br>value    |
|----------------------------------------------------------------|--------------------------------------------------------------------|------------------------|------------------------|------------------------|---------------------|
| TBABS N <sub>H</sub>                                           | $\times 10^{22}  \mathrm{cm}^{-2}$                                 | $2.0^{+0.3}_{-0.2}$    | $1.6 \pm 0.2$          | $4.1 \pm 0.4$          | $4.0^{+0.3}_{-0.4}$ |
| TBPCF N <sub>H</sub>                                           | $\times 10^{22}  \mathrm{cm}^{-2}$                                 | $6.7^{+2.1}_{-1.7}$    | _                      | _                      |                     |
| TBPCF covering fraction                                        | _                                                                  | $0.63^{+0.07}_{-0.08}$ | _                      | _                      | _                   |
| Г                                                              | _                                                                  | $1.66^{+0.14}_{-0.13}$ | $0 \pm 0.3$            | $1.50^{+0.09}_{-0.08}$ | $1.49\pm0.08$       |
| $E_{\rm cut}$                                                  | keV                                                                | _                      | $4.0^{+1.1}_{-0.8}$    | _                      | _                   |
| $Flux_{CPL/PL}$ (0.5–10 keV) <sup>(a)</sup>                    | $\times 10^{-12}  \mathrm{erg}  \mathrm{cm}^{-2}  \mathrm{s}^{-1}$ | $6.4^{+0.9}_{-0.6}$    | $3.88_{-0.15}^{+0.16}$ | $5.5^{+0.4}_{-0.3}$    | $5.5 \pm 0.3$       |
| $kT_{\rm BB \ or \ APEC}$                                      | eV                                                                 | _                      | _                      | $120 \pm 10$           | $140^{+30}_{-20}$   |
| $R_{ m BB}^{(b)}$                                              | km                                                                 | _                      | _                      | $100^{+80}_{-50}$      | _                   |
| $N_{ m APEC}$                                                  | $\mathrm{cm}^{-5}$                                                 | —                      | _                      | _                      | $0.6^{+1.2}_{-0.4}$ |
| Flux <sub>BB or APEC</sub> $(0.5-10 \text{ keV})^{(a)}$        | $\times 10^{-11} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$      | —                      | —                      | $2.9^{+3.0}_{-1.5}$    | $22^{+21}_{-14}$    |
| Flux <sub>BB or APEC</sub> /Flux <sub>TOT</sub> (0.5–10 keV)   | _                                                                  | _                      | _                      | 84.0 %                 | 97.6 %              |
| Flux <sub>BB or APEC</sub> /Flux <sub>TOT</sub> (0.01–100 keV) | _                                                                  | —                      | —                      | 78.5 %                 | 99.6 %              |
| Unabsorbed flux (0.5–10 keV)                                   | $\times 10^{-11} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$      | $0.64^{+0.09}_{-0.06}$ | $0.39^{+0.01}_{-0.02}$ | $3.4^{+3.0}_{-1.5}$    | $23^{+20}_{-14}$    |
| Luminosity $(0.5-10 \text{ keV})^{(b)}$                        | $\times 10^{34}$ erg s <sup>-1</sup>                               | $1.8^{+0.3}_{-0.2}$    | $1.10 \pm 0.04$        | $10^{+8}_{-5}$         | $60_{-40}^{+60}$    |
| $\chi^2_{\nu}$ /d.o.f.                                         | _                                                                  | 0.95/920               | 0.96/921               | 0.95/920               | 0.96/920            |

<sup>(a)</sup>Corrected for absorption. <sup>(b)</sup>Assuming a source distance of d = 5 kpc.

#### $\downarrow$ rather high absorption: $N_{\rm H} \sim (2-4) \ge 10^{22} \text{ cm}^{-2}$



N. La Palombara – IASF Milano

CNOC XII - Cefalù - 28/09/2022



INAF

#### XMM-Newton observation of CXOU J225355: EPIC spectral analysis

| Model<br>parameter                                             | –<br>Unit                                                          | TBPCF×PL<br>value      | CPL<br>value           | PL+BB<br>value         | PL+APEC<br>value    |
|----------------------------------------------------------------|--------------------------------------------------------------------|------------------------|------------------------|------------------------|---------------------|
| TBABS N <sub>H</sub>                                           | $\times 10^{22}  \mathrm{cm}^{-2}$                                 | $2.0^{+0.3}_{-0.2}$    | $1.6 \pm 0.2$          | $4.1 \pm 0.4$          | $4.0^{+0.3}_{-0.4}$ |
| TBPCF N <sub>H</sub>                                           | $\times 10^{22}  \mathrm{cm}^{-2}$                                 | $6.7^{+0.2}_{-1.7}$    | _                      | _                      |                     |
| TBPCF covering fraction                                        | _                                                                  | $0.63^{+0.07}_{-0.08}$ | _                      | _                      | _                   |
| Γ                                                              | _                                                                  | $1.66^{+0.14}_{-0.13}$ | $0 \pm 0.3$            | $1.50^{+0.09}_{-0.08}$ | $1.49\pm0.08$       |
| $E_{\rm cut}$                                                  | keV                                                                | _                      | $4.0^{+1.1}_{-0.8}$    | _                      | _                   |
| $Flux_{CPL/PL}$ (0.5–10 keV) <sup>(a)</sup>                    | $\times 10^{-12}  \mathrm{erg}  \mathrm{cm}^{-2}  \mathrm{s}^{-1}$ | $6.4^{+0.9}_{-0.6}$    | $3.88^{+0.16}_{-0.15}$ | $5.5^{+0.4}_{-0.3}$    | $5.5 \pm 0.3$       |
| $kT_{\rm BB \ or \ APEC}$                                      | eV                                                                 | _                      | _                      | $120 \pm 10$           | $140^{+30}_{-20}$   |
| $R_{ m BB}^{(b)}$                                              | km                                                                 | _                      | _                      | $100^{+80}_{-50}$      | _                   |
| N <sub>APEC</sub>                                              | $\mathrm{cm}^{-5}$                                                 | _                      | _                      | _                      | $0.6^{+1.2}_{-0.4}$ |
| Flux <sub>BB or APEC</sub> $(0.5-10 \text{ keV})^{(a)}$        | $\times 10^{-11} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$      | _                      | _                      | $2.9^{+3.0}_{-1.5}$    | $22^{+21}_{-14}$    |
| Flux <sub>BB or APEC</sub> /Flux <sub>TOT</sub> (0.5–10 keV)   | _                                                                  | _                      | _                      | 84.0 %                 | 97.6 %              |
| Flux <sub>BB or APEC</sub> /Flux <sub>TOT</sub> (0.01–100 keV) | _                                                                  | _                      | _                      | 78.5 %                 | 99.6 %              |
| Unabsorbed flux (0.5–10 keV)                                   | $\times 10^{-11} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$      | $0.64^{+0.09}_{-0.06}$ | $0.39^{+0.01}_{-0.02}$ | $3.4^{+3.0}_{-1.5}$    | $23^{+20}_{-14}$    |
| Luminosity $(0.5-10 \text{ keV})^{(b)}$                        | $\times 10^{34}  {\rm erg \ s^{-1}}$                               | $1.8^{+0.3}_{-0.2}$    | $1.10 \pm 0.04$        | $10^{+8}_{-5}$         | $60_{-40}^{+60}$    |
| $\chi^2_{\nu}$ /d.o.f.                                         | _                                                                  | 0.95/920               | 0.96/921               | 0.95/920               | 0.96/920            |

<sup>(a)</sup>Corrected for absorption. <sup>(b)</sup>Assuming a source distance of d = 5 kpc.

## ↓ rather hard spectrum: Γ ~ 0 - 1.5



N. La Palombara – IASF Milano

CNOC XII - Cefalù - 28/09/2022



| Model                                                          | _                                                               | TBPCF×PL               | CPL                    | PL+BB                  | PL+APEC             |
|----------------------------------------------------------------|-----------------------------------------------------------------|------------------------|------------------------|------------------------|---------------------|
| parameter                                                      | Unit                                                            | value                  | value                  | value                  | value               |
| TBABS Nu                                                       | $\times 10^{22} \mathrm{cm}^{-2}$                               | $20^{+0.3}$            | $16 \pm 02$            | 41 + 04                | $4 0^{+0.3}$        |
| TBPCF $N_{\rm H}$                                              | $\times 10^{-2}$ cm <sup>-2</sup>                               | $6.7^{+2.1}$           | -                      | 1 ± 0.+                | -0.4                |
| TBPCF covering fraction                                        | _                                                               | $0.63^{+0.07}_{-0.08}$ | _                      | _                      | _                   |
| Г                                                              | _                                                               | $1.66^{+0.14}_{-0.13}$ | $0 \pm 0.3$            | $1.50^{+0.09}_{-0.08}$ | $1.49\pm0.08$       |
| $E_{ m cut}$                                                   | keV                                                             |                        | $4.0^{+1.1}_{-0.8}$    |                        | _                   |
| Flux <sub>CPL/PL</sub> $(0.5-10 \text{ keV})^{(a)}$            | $\times 10^{-12} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$   | $6.4^{+0.9}_{-0.6}$    | $3.88^{+0.16}_{-0.15}$ | $5.5^{+0.4}_{-0.3}$    | $5.5 \pm 0.3$       |
| $kT_{\rm BB \ or \ APEC}$                                      | eV                                                              | —                      | —                      | $120 \pm 10$           | $140^{+30}_{-20}$   |
| $R_{ m BB}^{(b)}$                                              | km                                                              | _                      | _                      | $100^{+80}_{-50}$      | _                   |
| N <sub>APEC</sub>                                              | $\mathrm{cm}^{-5}$                                              | _                      | _                      | _                      | $0.6^{+1.2}_{-0.4}$ |
| Flux <sub>BB or APEC</sub> $(0.5-10 \text{ keV})^{(a)}$        | $\times 10^{-11} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$   | _                      | _                      | $2.9^{+3.0}_{-1.5}$    | $22^{+21}_{-14}$    |
| Flux <sub>BB or APEC</sub> /Flux <sub>TOT</sub> (0.5–10 keV)   | _                                                               | _                      | _                      | 84.0 %                 | 97.6 %              |
| Flux <sub>BB or APEC</sub> /Flux <sub>TOT</sub> (0.01–100 keV) | _                                                               | _                      | _                      | 78.5 %                 | 99.6 %              |
| Unabsorbed flux (0.5–10 keV)                                   | $\times 10^{-11} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ | $0.64^{+0.09}_{-0.06}$ | $0.39^{+0.01}_{-0.02}$ | $3.4^{+3.0}_{-1.5}$    | $23^{+20}_{-14}$    |
| Luminosity $(0.5-10 \text{ keV})^{(b)}$                        | $\times 10^{34}  {\rm erg \ s^{-1}}$                            | $1.8^{+0.3}_{-0.2}$    | $1.10 \pm 0.04$        | $10^{+8}_{-5}$         | $60_{-40}^{+60}$    |
| $\chi^2_{\nu}$ /d.o.f.                                         | _                                                               | 0.95/920               | 0.96/921               | 0.95/920               | 0.96/920            |

<sup>(a)</sup>Corrected for absorption. <sup>(b)</sup>Assuming a source distance of d = 5 kpc.

 $\downarrow$  Flux of the non-thermal component ~ (4-6) x 10<sup>-12</sup> erg cm<sup>-2</sup> s<sup>-1</sup>



N. La Palombara – IASF Milano

CNOC XII - Cefalù - 28/09/2022

*12* 



| Model<br>parameter                                             | –<br>Unit                                                          | TBPCF×PL<br>value      | CPL<br>value           | PL+BB<br>value         | PL+APEC<br>value    |
|----------------------------------------------------------------|--------------------------------------------------------------------|------------------------|------------------------|------------------------|---------------------|
| TBABS N <sub>H</sub>                                           | $\times 10^{22}  \mathrm{cm}^{-2}$                                 | $2.0^{+0.3}_{-0.2}$    | $1.6 \pm 0.2$          | $4.1 \pm 0.4$          | $4.0^{+0.3}$        |
| TBPCF N <sub>H</sub>                                           | $\times 10^{22}  \mathrm{cm}^{-2}$                                 | $6.7^{+0.2}_{-1.7}$    | _                      | _                      | -0.4                |
| TBPCF covering fraction                                        | _                                                                  | $0.63^{+0.07}_{-0.08}$ | _                      | _                      | _                   |
| Γ                                                              | _                                                                  | $1.66^{+0.14}_{-0.13}$ | $0 \pm 0.3$            | $1.50^{+0.09}_{-0.08}$ | $1.49\pm0.08$       |
| $E_{ m cut}$                                                   | keV                                                                | _                      | $4.0^{+1.1}_{-0.8}$    | _                      | _                   |
| $Flux_{CPL/PL}$ (0.5–10 keV) <sup>(a)</sup>                    | $\times 10^{-12}  \mathrm{erg}  \mathrm{cm}^{-2}  \mathrm{s}^{-1}$ | $6.4^{+0.9}_{-0.6}$    | $3.88^{+0.16}_{-0.15}$ | $5.5^{+0.4}_{-0.3}$    | $5.5 \pm 0.3$       |
| $kT_{\rm BB or APEC}$                                          | eV                                                                 | _                      | _                      | $120 \pm 10$           | $140^{+30}_{-20}$   |
| $R_{ m BB}^{(b)}$                                              | km                                                                 | _                      | _                      | $100^{+80}_{-50}$      | _                   |
| N <sub>APEC</sub>                                              | $\mathrm{cm}^{-5}$                                                 | —                      | _                      | _                      | $0.6^{+1.2}_{-0.4}$ |
| Flux <sub>BB or APEC</sub> $(0.5-10 \text{ keV})^{(a)}$        | $\times 10^{-11} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$      | —                      | —                      | $2.9^{+3.0}_{-1.5}$    | $22^{+21}_{-14}$    |
| Flux <sub>BB or APEC</sub> /Flux <sub>TOT</sub> (0.5–10 keV)   | _                                                                  | —                      | _                      | 84.0 %                 | 97.6 %              |
| Flux <sub>BB or APEC</sub> /Flux <sub>TOT</sub> (0.01–100 keV) | _                                                                  | _                      | _                      | 78.5 %                 | 99.6 %              |
| Unabsorbed flux (0.5–10 keV)                                   | $\times 10^{-11} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$      | $0.64^{+0.09}_{-0.06}$ | $0.39^{+0.01}_{-0.02}$ | $3.4^{+3.0}_{-1.5}$    | $23^{+20}_{-14}$    |
| Luminosity $(0.5-10 \text{ keV})^{(b)}$                        | $\times 10^{34}  {\rm erg \ s^{-1}}$                               | $1.8^{+0.3}_{-0.2}$    | $1.10 \pm 0.04$        | $10^{+8}_{-5}$         | $60_{-40}^{+60}$    |
| $\chi^2_{\nu}$ /d.o.f.                                         | _                                                                  | 0.95/920               | 0.96/921               | 0.95/920               | 0.96/920            |

<sup>(a)</sup>Corrected for absorption. <sup>(b)</sup>Assuming a source distance of d = 5 kpc.

## Flux of the thermal component ~ 10-100 times higher: overestimated due to the combination of high absorption and low temperature?

IJ,



N. La Palombara – IASF Milano

CNOC XII - Cefalù - 28/09/2022

*13* 



#### **Phase-resolved spectral analysis - 1**

- Independent fit of the two spectra: • f decreases of  $\sim 20.\%$
- $f_x$  decreases of ~ 20 % from A to B
- Both BB and APEC components significant at 99 % c.l.
- Consistent values of almost all parameters (only N<sub>H</sub> decreases for PL+BB/APEC model)
- $f_x$  reduction of ~ 20 % for PL and ~ 60-70 % for BB/APEC, but with large uncertainties



- no clear evidence of a spectral variation
- possible variation in the relative contribution ofthe two components for the PL+BB/APEC models



CNOC XII – Cefalù – 28/09/2022

14



#### Phase-resolved spectral analysis - 2

Simultaneous fit of phase-resolved spectra:

1) Single non-thermal component models:

- only normalization variation (common  $N_{\rm H}$  and  $\Gamma$ ) rejected by the data  $\Rightarrow$  also a variation of  $N_{\rm H}$ ,  $\Gamma$  or  $E_{\rm cut}$  is necessary
- constant CPL component rejected by the data
- constant PL component possible only with a large variation of TBPCF parameters

#### 2) Two-component models:

Data consistent with a variation of only the relative contribution of the two components, but:

- in all cases, data inconsistent with a constant PL component
- constant thermal component:
  - o rejected if only PL normalization varies
  - $\circ$  possible if either *N*<sub>H</sub> or Γ vary

#### data consistent with a constant thermal component



*CNOC XII – Cefalù – 28/09/2022* 

*15* 



INAI

#### **Phase-resolved spectral analysis - 3**

Spectrum A: emission feature at E ~ 6.1 keV Gaussian component significant at 99 % c.l., with E = 6.12±0.08 keV,  $\sigma = 80(+110/-80)$  eV, EW = 130(+90/-80) eV  $\downarrow$ 

inconsistent with neutral Fe emission line



- Weak statistical improvement in the spectral fit ( $\Delta \chi_v^2 = 0.05$ )
- SIMFTEST  $\Rightarrow$  < 1 % probability of being a spurious component



CNOC XII – Cefalù – 28/09/2022



INAF

## **Flux long-term evolution**





N. La Palombara – IASF Milano

CNOC XII - Cefalù - 28/09/2022



**Period** evolution

#### **Spin period long-term evolution**



 $P_{\text{spin},2014}$  fully consistent with a constant pulsar spin down at an average  $\dot{P} = 5.3 \times 10^{-10} \text{ s s}^{-1}$ , in agreement with Esposito et al. (2013)



N. La Palombara – IASF Milano

CNOC XII – Cefalù – 28/09/2022

18



## **Timing and spectral properties - 1**

Comparison with previous Chandra and Swift results:

- Confirmation of the three-peak pulse profile
- Discovery of the spectral variability along the spin phase
- Very similar absorption ( $N_{\rm H} = 2 \times 10^{22} \,{\rm cm}^{-2}$ ) for the two models with only a non-thermal component (CPL and partially-covered PL)

Estimated Galactic value in the source direction:  $N_{\rm H, Gal} = 9 \times 10^{21} \, {\rm cm}^{-2}$   $\downarrow \downarrow$  $\geq 50 \%$  of the total absorption is due to a local component

inhomogeneous absorber medium in the case of the partially-covered PL model, which can be reasonably ascribed to the Be, clumpy, polar wind crossing the line of sight to the X-ray source



CNOC XII – Cefalù – 28/09/2022





## **Timing and spectral properties - 2**

- 1) Possible additional thermal component:
- Common spectral feature in several BeXBs (either persistent with low luminosity or transient with high luminosity)
- Low estimated temperature (kT = 120-140 eV) compared with BeXBs of similar luminosity
- Estimated unabsorbed flux of this component largely dominates the total source flux
- Size of the thermal emission region significantly larger than the NS size

we disfavour the presence of such a thermal component

2) Spectral variability with the pulse phase proved with the phase-resolved spectral analysis



CNOC XII – Cefalù – 28/09/2022





## Conclusions

*XMM-Newton* results confirm that CXOU J225355.1+624336 is characterised by:

- Low luminosity:  $L_{\rm X} = 10^{34-35} \, {\rm erg \ s^{-1}}$
- Limited variability:  $f_X$  variations within ± 30 %
- $P_{\rm spin}$  consistent with a constant pulsar spin down

wind-accretion scenario of the pulsating NS from the companion Be star

Source classification:

- Additional evidence of the similarity between CXOU J225355.1+624336 and X Per-like sources
- $P_{\rm spin} = 46.753 \text{ s} \Rightarrow$  source with the shortest pulse period in the class of persistent BeXBs







## **Future perspectives**

Spectral investigation of the poorly studied HMXB **4U 0728-25**:

- Optical counterpart: O8-9 Ve type star (Negueruela et al. 1996)
- Estimated distance:  $d = 7.6 \pm 0.9$  kpc (based on Gaia EDR3 data)
- $P_{\text{spin}} = 103.2 \pm 0.1 \text{ s}, P_{\text{orb}} \cong 34.5 \text{ days}$  (Corbet & Peele 1997)
- Almost steady emission with no brightening, based on source monitoring performed with *Swift* BAT between 2005 and 2016 (Corbet et al. 2016)
- Included in the catalogues of persistent X-ray sources detected with *BeppoSAX* WFC (Capitanio et al. 2011) and INTEGRAL IBIS (Bird et al. 2016)
- $f_X \sim a \text{ few } 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1} \Rightarrow L_X \sim a \text{ few } 10^{35} \text{ erg s}^{-1}$

strong candidate as X-Persei–like persistent BeXB







INAF

### **Future perspectives**





N. La Palombara – IASF Milano



## **Future perspectives**

Spectral investigation of the poorly studied HMXB **4U 0728-25**:

- Optical counterpart: O8-9 Ve type star (Negueruela et al. 1996)
- Estimated distance:  $d = 7.6 \pm 0.9$  kpc (based on Gaia EDR3 data)
- $P_{\text{spin}} = 103.2 \pm 0.1 \text{ s}, P_{\text{orb}} \cong 34.5 \text{ days}$  (Corbet & Peele 1997)
- Almost steady emission with no brightening, based on source monitoring performed with *Swift* BAT between 2005 and 2016 (Corbet et al. 2016)
- Included in the catalogues of persistent X-ray sources detected with *BeppoSAX* WFC (Capitanio et al. 2011) and INTEGRAL IBIS (Bird et al. 2016)
- $f_X \sim a \text{ few } 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1} \Rightarrow L_X \sim a \text{ few } 10^{35} \text{ erg s}^{-1}$

strong candidate as X-Persei–like persistent BeXB

Observation proposal accepted in Priority C for the *XMM-Newton* AO21 ↓ STAY TUNED!







## **Backup slides**

#### Single-component model

| Parameter                                               | Spectrum A          | Spectrum B             |  |  |  |  |
|---------------------------------------------------------|---------------------|------------------------|--|--|--|--|
| TBPCF×PL                                                |                     |                        |  |  |  |  |
| TBABS $N_{\rm H}$ (×10 <sup>22</sup> cm <sup>-2</sup> ) | $1.9^{+0.6}_{-0.9}$ | $1.8^{+0.3}_{-0.4}$    |  |  |  |  |
| TBPCF $N_{\rm H}$ (×10 <sup>22</sup> cm <sup>-2</sup> ) | $6 \pm 2$           | $6 \pm 2$              |  |  |  |  |
| TBPCF covering fraction                                 | $0.7^{+0.2}_{-0.1}$ | $0.6 \pm 0.1$          |  |  |  |  |
| Γ                                                       | $1.5 \pm 0.2$       | $1.6^{+0.2}_{-0.1}$    |  |  |  |  |
| Flux <sub>PL</sub> (0.5–10 keV) (a)                     | $6.7^{+1.1}_{-0.8}$ | $5.4^{+1.0}_{-0.6}$    |  |  |  |  |
| Luminosity (0.5-10 keV) (b)                             | $1.9_{-0.2}^{+0.3}$ | $1.5_{-0.1}^{+0.3}$    |  |  |  |  |
| $\chi^2_{\nu}$ /d.o.f.                                  | 1.12/176            | 1.01/225               |  |  |  |  |
| CPL                                                     |                     |                        |  |  |  |  |
| TBABS $N_{\rm H}$ (×10 <sup>22</sup> cm <sup>-2</sup> ) | $1.8^{+0.5}_{-0.4}$ | $1.5^{+0.2}_{-0.3}$    |  |  |  |  |
| Γ                                                       | $-0.2 \pm 0.5$      | $0.2^{+0.3}_{-0.4}$    |  |  |  |  |
| $E_{\rm cut}$ (keV)                                     | $4^{+2}_{-1}$       | $4^{+2}_{-1}$          |  |  |  |  |
| Flux <sub>CPL</sub> (0.5–10 keV) (a)                    | $4.3^{+0.3}_{-0.2}$ | $3.5 \pm 0.2$          |  |  |  |  |
| Luminosity (0.5-10 keV) (b)                             | $1.23 \pm 0.08$     | $0.99^{+0.06}_{-0.05}$ |  |  |  |  |
| $\chi^2_{\nu}$ /d.o.f.                                  | 1.15/177            | 1.02/226               |  |  |  |  |

**Notes.** <sup>(a)</sup>Corrected for absorption,  $\times 10^{-12}$  erg cm<sup>-2</sup> s<sup>-1</sup>. <sup>(b)</sup> $\times 10^{34}$  erg s<sup>-1</sup>, assuming a source distance of d = 5 kpc. <sup>(c)</sup>Assuming a source distance of d = 5 kpc.

#### Double-component model

| Parameter                                                | Spectrum A           | Spectrum B               |  |  |  |
|----------------------------------------------------------|----------------------|--------------------------|--|--|--|
| PL+BB                                                    |                      |                          |  |  |  |
| TBABS $N_{\rm H}$ (×10 <sup>22</sup> cm <sup>-2</sup> )  | $4.6^{+0.8}_{-0.7}$  | $3.5 \pm 0.5$            |  |  |  |
| Г                                                        | $1.4 \pm 0.1$        | $1.5 \pm 0.1$            |  |  |  |
| Flux <sub>PL</sub> (0.5–10 keV) (a)                      | $6.2 \pm 0.5$        | $4.8^{+0.4}_{-0.3}$      |  |  |  |
| $kT_{BB}$ (eV)                                           | $120 \pm 20$         | $120^{+10}_{-20}$        |  |  |  |
| $R_{\rm BB}$ (km) <sup>(c)</sup>                         | $110^{+150}_{-70}$   | 80 <sup>+90</sup><br>-50 |  |  |  |
| Flux <sub>BB</sub> (0.5–10 keV) (a)                      | $40^{+90}_{-30}$     | $20^{+20}_{-10}$         |  |  |  |
| Flux <sub>BB</sub> /Flux <sub>TOT</sub> (0.5-10 keV)     | 85.8%                | 77.0%                    |  |  |  |
| Flux <sub>BB</sub> /Flux <sub>TOT</sub> (0.01-100 keV)   | 76.9%                | 70.7%                    |  |  |  |
| Unabsorbed flux (0.5–10 keV) (a)                         | $50^{+90}_{-30}$     | $20^{+30}_{-10}$         |  |  |  |
| Luminosity (0.5–10 keV) (b)                              | $14^{+25}_{-9}$      | 6+7                      |  |  |  |
| $\chi^2_{\nu}$ /d.o.f.                                   | 1.11/176             | 1.01/225                 |  |  |  |
| PL+APEC                                                  |                      |                          |  |  |  |
| TBABS $N_{\rm H}$ (×10 <sup>22</sup> cm <sup>-2</sup> )  | $4.4 \pm 0.7$        | $3.4^{+0.4}_{-0.5}$      |  |  |  |
| Γ                                                        | $1.4^{+0.1}_{-0.2}$  | $1.5 \pm 0.1$            |  |  |  |
| Flux <sub>PL</sub> $(0.5-10 \text{ keV})^{(a)}$          | $6.0^{+0.6}_{-0.4}$  | $4.8 \pm 0.3$            |  |  |  |
| $kT_{APEC}$ (eV)                                         | $140^{+40}_{-30}$    | $140^{+40}_{-20}$        |  |  |  |
| $N_{\text{APEC}}$ (cm <sup>-5</sup> )                    | $1.0^{+0.7}_{-0.8}$  | $0.30^{+0.23}_{-0.25}$   |  |  |  |
| Flux <sub>APEC</sub> $(0.5-10 \text{ keV})^{(a)}$        | 300+900              | $120^{+210}_{-90}$       |  |  |  |
| Flux <sub>APEC</sub> /Flux <sub>TOT</sub> (0.5-10 keV)   | 98.2%                | 95.9%                    |  |  |  |
| Flux <sub>APEC</sub> /Flux <sub>TOT</sub> (0.01–100 keV) | 99.6%                | 99.3%                    |  |  |  |
| Unabsorbed flux (0.5-10 keV) (a)                         | $300^{+1000}_{-200}$ | $120^{+210}_{-90}$       |  |  |  |
| Luminosity (0.5-10 keV) (b)                              | $100^{+290}_{-70}$   | $30_{-20}^{+60}$         |  |  |  |
| $\chi^{2}/d.o.f.$                                        | 1.11/176             | 1.02/225                 |  |  |  |

**Notes.** <sup>(a)</sup>Corrected for absorption,  $\times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$ . <sup>(b)</sup> $\times 10^{34} \text{ erg s}^{-1}$ , assuming a source distance of d = 5 kpc. <sup>(c)</sup>Assuming a source distance of d = 5 kpc.