

FROM THE HERMES FLEET TO THE FLIGHT OF THE ALBATROS: SURFING THE WAVES OF QUANTUM SPACE-TIME

ANDREA SANNA, ALESSANDRO RIGGIO

UNIVERSITÀ DEGLI STUDI CAGLIARI

ON BEHALF OF THE ALBATROS AND THE HERMES COLLABORATIONS

Congresso Nazionale Oggetti Compatti, CNOC XII – Cefalù - 27 Settembre 2022

SCIENTIFIC CHALLENGES FOR THE NEXT DECADES

Multi-Messenger Astronomy

Testing Quantum Gravity

DEVELOPMENT OF MULTI-MESSENGER ASTRONOMY

GW/GRB 170817

Multi-Messenger Astronomy Paradox

We need a high-energy All-sky Monitor with large area to allow Multi-Messenger Astronomy to develop from infancy to maturity!

QUANTUM GRAVITY EXPERIMENT

QUANTUM GRAVITY MINIMAL LENGTH HYPOTHESIS, LIV AND DISPERSION RELATION FOR PHOTONS *IN VACUO*

Existence of a Minimal Length (String theories, etc.)

 $I_{\text{MIN}} \approx I_{\text{PLANCK}} = [Gh/(2\pi c^3)]^{1/2} = 1.6 \times 10^{-33} \text{ cm}$

implies:

i) Lorentz Invariance Violation (LIV): no further Lorentz contraction
ii) Space has the structure of a crystal lattice
iii) Existence of a dispersion law for photons *in vacuo*

QUANTUM GRAVITY EXPERIMENT

THE ENERGY AND REDSHIFT DELAY DEPENDENCE

Low z

Time lags caused by Quantum Gravity effects:

- $\propto |E_{phot}(Band II) E_{phot}(Band I)|$
- $\propto D_{\text{TRAV}}(z_{\text{GRB}})$

Time lags caused by prompt emission mechanism:
 complex dependence from E_{phot}(Band II) and E_{phot}(Band I)
 independent of D_{TRAV}(z_{GRB})

MONOLITHIC VS DISTRIBUTED HIGH ENERGY OBSERVATORIES

BeppoSAX

AGILE

Pros:

- Reliability
- long heritage

Pros:

- modularity
- limited cost
- quicker development
- Low risk

Current nanosat and cubesat facts

Facts as of 2022 August 1

Nanosats launched: 2068
CubeSats launched: 1897
Interplanetary CubeSats: 4
Nanosats destroyed on launch: 108
Most nanosats on a rocket: 120
Countries with nanosats: 77
Companies in database: 575
Forecast: over 2080 nanosats to launch in 6 years

Credits: https://www.nanosats.eu/

THE ALBATROS MISSION

(Astonishingly Large Baseline Array Transient Reconnaissance Observatory from Space)

Properties:

- 3 satellites in heliocentric orbits
- 2x400 cm² detectors (~20 kg) per satellite pointing in opposite directions
- keV MeV energy band
- Sub-microsecond time resolution
- 4 steradians FoV (whole sky)
- 1-2 GRB/day detection rate
- 75% expected success in GRB redshift determination with ground-based facilities follow-up

THE ALBATROS MISSION: CART-WHEEL ORBITS

3 satellites in "Cart-wheel" orbits (e.g., LISA orbits):

3 heliocentric orbits with a=1AU

3 slightly different small inclinations (~0.5 degrees) w.r.t. to ecliptic plane

- Equatorial triangle of side: 2.5x10⁶ km
- Contact to ground up to 23 hours per day
- Wet mass ~ 230 kg per satellite
- Dry mass ~ 165 kg per satellite

THE ALBATROS MISSION: LOCALIZATION CAPABILITIES

Determination of source position through Delays in Time of Arrival (ToA) of an impulsive event (variable signal) over 3 (or more) spatially separate detectors

Transient source in the sky defined by time of the event, position in the sky: T_0 , α , δ (3 parameters, N_{PAR} = 3)

Statistical accuracy in determining α and δ with N_{SAT}:

$$\sigma_{a} \approx \sigma_{\delta} = c \sigma_{TOA} / \langle baseline \rangle \times (N_{SAT} - N_{PAR})^{-1/2}$$

 $\sigma_{\alpha} \approx \sigma_{\delta} \approx c \sigma_{TOA} / B \approx 24 \text{ arcsec} \times (B/2.5 \times 10^6 \text{ km})^{-1} \times (\sigma_{TOA} / 1 \text{ ms})$

THE ALBATROS MISSION: FIRST QUANTUM GRAVITY EXPERIMENT

SEARCH FOR A FIRST ORDER DISPERSION RELATION IN A SAMPLE OF GRBS OF KNOWN REDSHIFT (BURDERI *ET AL*. EXP. ASTR., 2021) For a sample of **i** = **1**...N GRBs of known redshift z_i at a given energy **E**, adopt: $\Delta t_i(E) = \tau(E) + \Delta t_{LIV} (z_i, E)$ where $\tau(E)$ = intrinsic spectral delay at E and

 $\Delta t_{LIV}(z_i, E) = D_{TRAV}(z_i)/c \alpha(E)(E - E_0)/(m_{PLANCK}c^2) = \alpha(E) \times t_i$

for a first order dispersion law. $\alpha(E) \approx 1 = \text{delay constant}$ at E and $D_{\text{TRAV}}(z_i)$ parametrises the GRB distance as function of redshift.

Now we plot Δt_i vs. t_i and fit with $\Delta t_i = \tau(E) + \alpha(E) \times t_i$ to obtain $\tau(E)$ and $\alpha(E)$.

If a first order dispersion relation is present, $\alpha(E) = \alpha$ for any energy E Compute the average value of $\alpha(E)$ and its standard deviation: $\alpha = \langle \alpha(E) \rangle$ and σ_{α} , for all the energy considered. If $\sigma_{\alpha} \langle \alpha$ the first order dispersion relation is found, otherwise an upper limit is $\alpha \leq \sigma_{\alpha}$. Since all the errors are of statistical origin, the accuracy of the method depend on the number of photons detected.

1 GRB observed by a large area detector (100 m²)

1000 GRBs observed by a smaller area detector (1000 cm²)

FROM HERMES TO ALBATROS

High Energy Rapid Modular Ensemble of Satellites

6 x 3U CubeSats in LEO (500-550 km) to be launch in Q1 2024(?) + SpIRIT payload (Q1 2023)

Funding status at 2022, April

ASI (Italian Space Agency) – 23/12/2016: MIUR (Italian Ministry of University and Research) + ASI 2018/19 : EU Horizon 2020 – Call: H2020-SPACE-2018-2020 – 17/07/2018: ASI (Italian Space Agency) – internal funding 2022 (MOC + operations)

Total Funding (at 04/2022): Launch allocated funds € 450,000
€ 3,450,000
€ 3,300,000
€ 1,700,000

€ 8,880,000

FROM HERMES TO ALBATROS

SDD + GAGG

Scintillator Crystal size: 0.7×1.2×1.5 cm Crystal type: Photo detector: Energy range: Energy resolution: Effective area: FOV: Temporal resolution: Mass: Volume TRL

60 GAGG crystals

- 120 SDD (1x0.5 cm)
- 3 keV ÷ ≥ 0.5 Mev
- ~ 10% at 30 keV
- $\sim 56 \, \mathrm{cm}^2$
- ~ 3 steradians (FWHM)
- ~ 0.5 µs
 - ~1.5 kg
- < 10×10×12.5 cm
- 6 (9 in 1 year)

SPIRIT

(Space Industry – Responsive – Intelligent – Thermal Nano-satellite)

Australian Space Agency + University of Melbourne

- 6U Spacecraft
- HERMES payload
- 3 innovative products to qualify in space
- Lunch: Q1 2023
- Sun-Synchronous Orbit

The Hermes Project

Thanks for the attention!

Please join the HERMES Science Team: https://www.hermes-sp.eu/?page_id=3643#ScienceTeam