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Introduction



Recover a signal affected by phenomena that change its phase
or period in a relatively short time, hindering their detection

using traditional techniques.
A specific example is the one of accreting pulsars.
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Problem statement 3



• Events’ arrival times are influenced by the Doppler effect (and
by the variation of the orbital period 𝑇𝑜𝑟𝑏 due to accretion)

• Computing the initial times of events allows reconstructing a
time series

• If an object has periodic behavior, the Fourier transform allows
determining the period from the correct series

Motivation 4



Finding the orbital parameters optimal combination
to reconstruct a periodic time series

• For each combination of orbital parameters, the Fourier
transform is computed

• For each spectrum, the maximum power is determined
• Each orbital parameters combination is associated with the

corresponding maximum power in the spectrum

Solution 5



Finding the orbital parameters optimal combination
to reconstruct a periodic time series

• Exhaustive (grid) search on all combinations of orbital
parameters =⇒ computationally expensive

• Targeted research on some combinations of orbital
parameters

Solution 6



• Drastic reduction of computing times
• Increase of the number of data that can be analyzed
• Possibility of discovering new pulsating objects

Advantages of targeted research 7



How to do a targeted research

• A targeted search uses information on the previous trials to
generate subsequent orbital parameter combinations =⇒
generate new points in a space R𝑛

• Evolutionary algorithms are inspired by natural processes to
generate new points in space

Evolutive algorithms 8



Evolutionary algorithms



• In nature, living beings evolve, or communicate with each
other in search of food

• The living things that are fitter for the environment survive or
are more successful

• Simple beings coordinate to achieve common goals

Fundamental principles 10



Source

Fundamental principles 11

https://en.wikipedia.org/wiki/Particle_swarm_optimization##/media/File:ParticleSwarmArrowsAnimation.gif


• Each point in a space R𝑛 is represented by a chromosome
• Each coordinate of a point is called gene
• The best chromosomes are more likely to survive and

combine with other chromosomes

Genetic algorithms 12



• Mutation: one or more genes change randomly
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• Crossover: two chromosomes combine together

0.6 0.2 0.1

0.6 0.5 0.1

0.2 0.5 0.4

• Selection: given a set of chromosomes, only the best survive
Every operation is associated with a different probability.

Genetic algorithms – fundamental operations 13



• Initialization: generation of a random set of chromosomes
• Selection: the best chromosomes are selected, the others are

eliminated
• Evolution: the selected chromosomes are combined with

each other using crossover operations or mutate
• Termination

Algorithm structure 14



• Crossover favors the exploitation of information from previous
trials

• Mutation favors the exploration of space

One of the biggest difficulties is balancing mutation
and crossover probabilities.

Parameters choice 15



Application



• A combination of orbital parameters comprises three
parameters: 𝜙, 𝑇𝑜𝑟𝑏 e 𝑎𝑋 sin 𝑖

• A gene refers to an orbital parameter
• A chromosome is a set of three orbital parameters
• A chromosome is associated with a cost, which is the opposite

of the maximum power of the corresponding spectrum

The goal is minimizing the cost =⇒ maximizing
power

Combinations representation 17



• Compared to exhaustive search, reducing the
number of iterations by a factor of at least 100 =⇒
from 3 months to 1 day

• Identification of sub-optimal orbital parameters on
data in X-rays and optical

Results 18



Object Type Number of combinations Speedup
Genetic

algorithm
Grid

search

J1023+0038 Optical 9928 12 ÷ 64 ≈ 100×
3XMM J004301.4+41307 X ray 7355 35 ÷ 343 ≈ 130×
3XMM J004232.1+411314 X ray 2691 4 ÷ 64 ≈ 360×

Quantitative results 19
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Future work



• Application of the algorithm to sources not yet studied
• Comparison between different evolutionary algorithms
• Collection of enough labelled data to take advantage of Machine Learning

techniques

Future work 26
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