

Congresso Nazionale Oggetti Compatti XII

The FRBs' saga: mysteries, suspects, and culprits

Andrea Possenti

FRBs @ CNOC XII

ANDREA POSSENTI

CEFALÙ - 29 SEPT 2022

FRBs' saga: 1st episode

FRB20010724

Duration $\Delta t \approx 5 \text{ ms}$ Dispersion Measure DM $\approx 375 \text{ pc/cm}^3$

First case of detection of an <u>highly dispersed</u> and <u>bright</u> radio burst

Contributions to the dispersion measure and distances

 $\mathrm{DM}_{\mathrm{FRB}}(z) = \mathrm{DM}_{\mathrm{MW,ISM}} + \mathrm{DM}_{\mathrm{MW,halo}} + \mathrm{DM}_{\mathrm{cosmic}}(z) + \mathrm{DM}_{\mathrm{host}}(z)$

 $DM_{MW,ISM}$ = contribution of the Milky Way $DM_{MW,halo}$ = contribution of the Milky Way Halo

Using the simplified formula of [loka 2003] or [Inoue 2004] for the redshift vs DM relationship (for z < 1), recently improved by [Mequart et al 2020]

 $z \approx DM_{cosmic} (pc/cm^3) / 1000$

one can use DM_{cosmic} as a proxy for the distance of the source

Distance $D_L \approx 1$ Gpc whence an Extragalactic origin ! ... and also for the energy released in the event $E_{\text{FRB}} = \frac{4\pi D_{\text{L}}^2 \mathcal{F}_{\nu} \Delta \nu}{(1+z)}$, where $F_{\nu} = S_{\nu} W \approx 30$ Jy ms $\Delta \nu \approx 10^9$ Hz

Energy released $E_{FRB} \approx 10^{40} \text{ erg}$ [Lorimer et al 2007]

[courtesy Matteo Trudu]

Extragalactic and highly energetic events

 DM_{host} = contribution of the host Galaxy

FRBs' saga: 2nd episode

Discovery of a <u>population</u> of FRBs at Parkes

FRB20110220A, FRB20110627A, FRB20220703A, FRB20120127A

Thornton et al 2013

Saga's characters

It is located at https://www.wis-tns.org/

Search

								Selec
	e tu <mark>bl</mark> i)	Lir	mit to unclas, sifie	d ATs				
10 Years	▽)	🛛 🚺 🛄 Lir	nit to classified S clude RBs	Ne				
hi Name		TNS	n Public					
	🕞 🔲 Exact Match	All	× Ali ×					
RA	DEC	Sear	ch Radius				1000	
				arcsec	~			
Reporting Group	Disc. Data Sour	ce Class	sifying Group	Object Type	AT Type			
None adH0cc	ANTARES	Nor adH	ne IOcc	Afterglow AGN				
AHTS	ASAS-SN ASO	AHT	rs	Computed-	-la FRB - F	ast Radio Bu	1-2-11	/
Discovery Date Ra	nge	Disco	very Mag Range					
e.g. 2022-08-25	to			to				
<u>ID</u> A <u>Nar</u>	ne	Reps C	Class <u>RA</u>		DEC	<u>Obj.</u> <u>Type</u>	<u>Repeater</u> <u>of Primary</u> <u>Burst</u>	<u>DM</u> (E <u>'r</u>)
92669 <u>FRE</u>	<u>3 20210407C</u>	1 🗐	05:0	08:03.000	+26:03:39.00	FRB	FRB 20201124A	109 (4) /c/cc
92668 FRF	3 20210407B	1 🗉	05:0	18-03-000	+26:03:39.00	FRB	FRB	413 (3)

Select time interval and FRBs population

Note that repeaters appear with various names, but are associated to the original one

<u>ID</u> ▲	<u>Name</u>	Reps	Class	RA	DEC	<u>Obj.</u> <u>Type</u>	<u>Repeater</u> <u>of Primary</u> <u>Burst</u>	<u>DM</u> (E <u>`r</u>)	<u>Reporting</u> <u>Group/s</u>	<u>Discovery</u> <u>Data</u> <u>Source/s</u>	<u>Disc. Internal Name</u>	<u>Public</u>
92669	FRB 20210407C	1 🗉		05:08:03.000	+26:03:39.00	FRB	<u>FRB</u> 20201124A	109 (4) /c/cc	CRAFT	CRAFT	FRB210407.381	Y
92668	FRB 20210407B	1 🗉 o		05:08:03.000	+26:03:39.00	FRB	<u>FRB</u> 20201124A	413 (3) pc/cc	CRAFT	CRAFT	FRB210407.260	Y
	As today there are 630 catalogued FRBs											

Estimates of the rate ...

≈ 2800 sky/day for fluence > 2.0 Jy * ms at 1.4 GHz from Parkes surveys "complete" [Keane & Petroff 2015]

Nowadays the determination became much more sophisticated, trying to fully include observational biases:

 $\approx 10^5$ sky/day for fluence > 0.0146 Jy * ms at 1.4 GHz for 1 ms event at 7 σ [Niu et al 2021] $\approx 820 \pm 60 \pm 200$ sky/day for fluence > 5 Jy * ms at 0.6 GHz [CHIME/FRB 2021]

which translates into a volumetric rate

$\approx 7 \times 10^4$ in a Gpc³/year [Shin et al 2022] also compatible with isotropic distribution

Some comparison with rates of other cosmic events

 $\approx 2 \times 10^5 \text{ in a Gpc}^3/\text{year for Core Collapse SNae [Li et al 2011]}$ $\approx 10^5 \text{ in a Gpc}^3/\text{year for type Ia SNae [Scannapieco & Bildstein et al 2005]}$ $\approx 2.5 \times 10^4 \text{ in a Gpc}^3/\text{year for Soft Gamma Repeaters [Ofek et al 2007]}$ $\approx 2-20 \times 10^2 \text{ in a Gpc}^3/\text{year for Double Neutron Star mergers [Abbott et al 2020]}$ $\approx 2-20 \times 10^2 \text{ in a Gpc}^3/\text{year for Long Gamma-Ray burst beamed everywhere [Kulkarni et al 2014]}$ $\approx 5-20 \times 10^2 \text{ in a Gpc}^3/\text{year for Short Gamma-Ray burst beamed everywhere [Kulkarni et al 2014]}$

A remarkably high event rate! Suggestive to investigate the origin of the FRB

Frequency bands of observation

Telescope	Centre Frequency (MHz)	Bandwidth (MHz)	No. of Polarizations	A list of the main telescopes and radio bands which
WSRT	1370	300	2	and head detections of FDDs
ASKAP Incoherent	1272	336	2	produced detections of FRBs
ATCA	5500	2000	2	
	7500	2000	2	
CHIME	600	400	2	
DSA	1400	220	2	
DSN	2250	115	2	
	8360	450	2	
Effelsberg	1360	300	2	
-	6000	4000	2	
EVN	1700	128	2	
	5000	128	2	
FAST	1250	500	2	
GBT	350	100	2	
GMRT	650	200	2	
LOFAR	150	80	2	
Lovell	1400	336	2	
MeerKAT	1284	856	2	
	816	544	2	
MWA	185	30	2	
Northern Cross	408	16	1	
Parkes	2368	3300	2	
SRT	328	64	2	
	1400	500	2	
STARE2	1400	188	1	
UTMOST	834	16	1	
VLA	1400	256	2	
	6000	2048	2	
VLA (VLASS)	3000	1500	2	[Caleb & Kean 2021]

FRBs unambiguously detected from 110 MHz up to 8.5 GHz

The nature of the emission process

- Burst timescale gives limit on source area $A \leq (c \Delta t)^2 = (cW)^2 = (1500 \text{ km})^2 \approx 10^{17} \text{ cm}^2$
- Source power is very large $\mathbf{P} = \mathbf{E}_{\text{FRB}} / \mathbf{W} \approx 10^{42} \text{ erg/sec}$
- Typically $\Delta \nu \approx \nu \approx 10^9 \text{ Hz}$
- Brightness temperature T_b : equivalent black-body temperature in Rayleigh-Jeans limit

$$T_b = \frac{c^2}{2k\nu^2} B_{\nu}(T) = \frac{c^2}{2k\nu^2} \frac{4\pi D_{\rm L}^2 S_{\nu}}{A}$$
$$= \frac{c^2}{2k\nu^2} \frac{E_{\rm FRB}}{A W \Delta \nu} \ge 10^{35} \,\mathrm{K}$$

Since $L_{\nu} = 4\pi D_{L}^{2} S_{\nu}$ one can rewrite the relation to obtain

$$T_b = \frac{L_{\boldsymbol{\nu}}}{2k \, (\boldsymbol{\nu} \, W)^2}$$

and hence the plot...

Coherent emitters!

FRBs' saga: 3rd and 4th episodes

FRB20121102A

Discovery of <u>repeating</u> FRBs (repeaters: rFRB)

A great observational advantage for <u>characterizing</u> and <u>localizing</u> the source !

Repeaters (rFRB) family

24 repeaters known so far (\cong 4% of the whole published population)

22

ang et al

TNS Name	ν _c ^a MHz	DM (pc cm ⁻³)	DM_{MW} (pc cm $^{-3}$)	$DM_{\rm E}^{\ b}$ (pc cm ⁻³)	W _{obs} (ms)	S _{peak} (Jy)	F _{obs} (Jy ms)	z	<i>E</i> (10 ³⁹ erg)	∏ ^d (Jy ms)
FRB 20121102A	1375	557.00 ± 2.00	188.00	369.00	3.00 ± 0.50	$0.40\substack{+0.40\\-0.10}$	$1.20\substack{+1.60\\-0.55}$	0.31	0.13	0.36
FRB 20171019A	1297	460.80 ± 1.10	37.00	423.80	5.40 ± 0.30	40.50	219.00	0.35	34.01	101.62
FRB 20180814A	600	189.38 ± 0.09	87.00	102.38	2.60 ± 0.20	8.08 ^c	21.00	0.09	0.13	22.57
FRB 20180908B	600	195.70 ± 0.90	38.00	157.70	1.91 ± 0.10	0.60 ± 0.40	2.70	0.13	0.04	2.03
FRB 20180916B	600	349.70 ± 0.70	200.00	149.70	1.06 ± 0.05	7.64 ^c	8.10	0.12	0.12	10.26
FRB 20181017A	600	1281.00 ± 0.60	43.00	1238.00	20.20 ± 1.70	0.79 ^c	16.00	1.03	60.07	8.50
FRB 20181030A	600	103.50 ± 0.70	40.00	63.50	0.59 ± 0.08	12.37 ^c	7.30	0.05	0.02	4.75
FRB 20181119A	600	364.00 ± 0.30	34.00	330.00	2.66 ± 0.10	0.94 ^c	2.50	0.28	0.24	1.77
FRB 20181128A	600	450.20 ± 0.30	112.00	338.20	2.43 ± 0.16	1.81 ^c	4.40	0.28	0.46	3.45
FRB 20190116B	600	443.60 ± 0.80	20.00	423.60	1.50 ± 0.30	1.87 ^c	2.80	0.35	0.52	1.80
FRB20190117A	600	393.30 ± 0.10	48.00	345.30	1.44 ± 0.03	1.70 ± 0.60	5.90	0.29	0.64	6.36
FRB 20190208A	600	580.20 ± 0.20	72.00	508.20	1.31 ± 0.14	0.60 ± 0.30	2.00	0.42	0.60	1.70
FRB 20190209A	600	424.60 ± 0.60	46.00	378.60	3.70 ± 0.50	0.54 ^c	2.00	0.32	0.28	1.25
FRB 20190213A	600	651.50 ± 0.40	43.00	608.50	4.00	0.50 ± 0.30	3.00	0.51	1.46	1.80
FRB 20190212A	600	301.40 ± 0.20	49.00	252.40	2.10 ± 0.30	1.10 ± 0.60	2.50	0.21	0.13	2.67
FRB 20190222A	600	460.60 ± 0.10	87.00	373.60	2.97 ± 0.90	2.53 ^c	7.50	0.31	1.00	5.45
FRB 20190303A	600	221.80 ± 0.50	29.00	192.80	2.00 ± 0.30	0.50 ± 0.30	2.30	0.16	0.06	2.47
FRB 20190417A	600	1378.50 ± 0.30	78.00	1300.50	1.19 ± 0.02	0.70 ± 0.20	1.70	1.08	7.40	3.10
FRB 20190604A	600	552.60 ± 0.20	32.00	520.60	3.00 ± 0.40	0.90 ± 0.40	8.30	0.43	2.64	5.00
FRB 20190711A	23.8	593.10 ± 0.40	56.40	536.70	6.50 ± 0.50	5.23 ^c	34.00	0.45	9.88	17.70
FRB 20190907A	600	309.50 ± 0.30	53.00	256.50	0.54 ± 0.14	0.40 ± 0.20	0.90	0.21	0.05	1.10

Periodic repeaters

The second known case: FRB20121102A

The second known case is FRB20121102A which shows a periodicity \sim 161 days with an active phase of \sim 55% of the cycle

An additional great bonus for <u>planning multi-messenger</u> observations !

The lair of the culprits

20 FRBs to date have an **host galaxy** securely identified at 0.0001 < z < 0.66 [Nicastro, Guidorzi et al 21 for a review]

- Via interferometric imaging of repeaters (à la FRB20121102A)
- Imaging of one-off event via triggered accumulation of buffered raw voltages data

Some remarkable case:

Very diverse properties of the host Galaxies