X-ray emission from isolated neutron stars: latest results from XMM-Newton and NICER data

MICHELA RIGOSELLI¹

Sandro Mereghetti¹, Davide De Grandis¹, Roberto Turolla^{2,3}, Roberto Taverna², Silvia Zane³, George Younes⁴, Andrea Tiengo^{1,5}, Sara Anzuinelli^{1,6}, Luca Baldeschi^{1,7}

29/09/2022 – Cefalù

1 INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica Milano
 2 Dipartimento di Fisica e Astronomia, Università di Padova
 3 MSSL-UCL

4 Department of Physics, The George Washington University

5 Scuola Universitaria Superiore IUSS Pavia

6 Dipartimento di Fisica, Università degli Studi di Milano-Bicocca

7 Dipartimento di Fisica, Università degli Studi di Milano

Bolometric thermal luminosity vs age

see also Potekhin+ 2020, MNRAS

Bolometric thermal luminosity vs age

see also Potekhin+ 2020, MNRAS

Thermal emission models: theory...

- Multi-temperature surface, function of B field
- Local emissivity function of composition (gas and/or ions) and of *B* field
- Integrated emissivity depends on GR effects (function of *M*/*R*) and on emission geometry (*X* and ξ, emitting area...)

Lloyd+ 2003, ApJ Potekhin+ 2004, 2012, 2014 A&A Suleimanov+ 2009, 2010 A&A Taverna+ 2015, MNRAS Zane & Turolla 2006, MNRAS

Thermal emission models: ...vs practice!

~60 thermal INSs:

- ~40 fitted with 1BB
- ~20 fitted with 2BB

(one to account for the cooler and larger part of the surface, the other to account for the hotter region or the heated hot spot)

2BB thermal INSs

2BB thermal INSs

The XDINSs, purely thermal NSs

P, *P* -> $\tau_c \sim 10^6$ yr, *B*_s ~ 10¹³ G, *E*_{ROT} ~ 10³⁰ - 10³¹ erg/s

Source name	Lx	10 ⁻³ Ė _{ROT} / 4πd ²	Spectrum	
RX	10 ³² erg/s	10 ⁻¹⁵ erg/cm²/s	Yoneyama+ 2019	
J0420.0–5022	0.13±0.02	1.8	2BB	
J0720.4–3125	2.1±0.6	0.5	G*2BB	
J0806.4–4123	1.5±0.2	0.2	G*2BB	
J1308.6+2127	16.0±0.2	0.13	G*2BB	
J1605.3+3249	5.1±1.4		G*2BB	
J1856.5–3754	0.44±0.01	1.8	2BB	
J2143.0+0654	9.7±7.3	0.09	G*2BB	

The XDINSs, purely thermal NSs

 $P, \dot{P} \rightarrow \tau_{c} \sim 10^{6} \text{ yr}, B_{s} \sim 10^{13} \text{ G}, \dot{E}_{ROT} \sim 10^{30} - 10^{31} \text{ erg/s}$

Source name	L _X	10 ⁻³ Ė _{ROT} / 4πd ²	Spectrum
RX	10 ³² erg/s	10 ⁻¹⁵ erg/cm²/s	Yoneyama+ 2019 De Grandis, MR+ 2022b
J0420.0–5022	0.13±0.02	1.8	2BB+PL
J0720.4–3125	2.1±0.6	0.5	G*2BB
J0806.4–4123	1.5±0.2	0.2	G*2BB
J1308.6+2127	16.0±0.2	0.13	G*2BB
J1605.3+3249	5.1±1.4	—	G*2BB
J1856.5–3754	0.44±0.01	1.8	2BB+PL
J2143.0+0654	9.7±7.3	0.09	G*2BB

see also Dessert+ 2020, ApJ

RX J0420.0-5022: Spectral analysis

- 20 years of XMM-Newton data [144 ksec]
- Bulk of emission: BB with kT₁=46.3±0.3 eV, R₁=4.6±0.2 km
- Hard excess extracted with a <u>maximum likelihood</u> method...
- ... and fitted with a second BB (kT₂~210 eV, R₂~17 m), or a PL (Γ~3.1, F~10⁻¹⁵ erg/cm²/s), or both (kT₂~170 eV, Γ~1.6)

De Grandis, MR+ 2022b, MNRAS

RX J1856.5-3754: Spectral analysis

- 20 years of XMM-Newton data
 [1.43 Msec]
- Bulk of emission: BB with kT₁=61.9±0.1 eV, R₁=4.92±0.05 km
- Hard excess extracted with a <u>maximum likelihood</u> method...
- ... and fitted with a second BB
 (*kT*₂=138±13 eV, *R*₂=31±12 m) plus
 a PL (Γ~1.4±0.5, *F*~(2.5±0.7)×10⁻¹⁵
 erg/cm²/s)

De Grandis, MR+ 2022b, MNRAS

RX J1856.5–3754: Timing solution

- Coherent timing solution with no more cycles ambiguity
- A stable solution throughout 20 years (v = 0.14173907778(8) Hz, $\dot{v} = -6.042(4) \times 10^{-16}$ Hz/s, $|\ddot{v}| < 10^{-26}$ Hz/s²)
- Non symmetric pulse profile

RX J1856.5-3754: Pulse profiles

Soft pulse profile

Hard pulse profile

- Statistically significant variation in the hardness ratio: the spectrum gets harder at the peak of the pulse profile
- Hints of pulsation also above 1 keV

Thermal emission models: simulations!

- We simulated with a MCMC approach thermal spectra assuming a certain T distribution and T_p, a local emissivity, a compactness, an emission geometry
- We fitted those spectra with 2BB model, we measured the resulting T_2/T_1 and R_2/R_1 , and we compared the results with the data

2BB thermal INSs

T_p and geom. independent (see also Yakovlev 2021)

2BB thermal INSs

2BB thermal INSs

Conclusions

- The XDINS class is probably more variegate than previously thought. We just reached the minimum sensitivity needed to detect their non-thermal component, if present.
- The "T₂/T₁ vs R₂/R₁" plot is a roadmap to interpret the thermal emission of INSs, which seem to share a common T distribution despite a different evolutionary stage. Geminga, J0420 and J1856 are the exceptions: they have small hot spots heated by magnetospheric currents.
- The plot can also be used to test theoretical models. Magnetized atmosphere models with steep *T* distributions are needed.

Thanks for the attention!

T distribution

The XDINSs, purely the mail NSs

P, $\vec{P} \rightarrow \tau_c \sim 10^6$ yr, $B_s \sim 10^{13}$ G, $\vec{E}_{ROT} \sim 10^{30} - 10^{31}$ erg/s

Source name	L _X	10 ⁻³ Ė _{ROT} / 4πd ²	E cyc	Spectrum
RX	10 ³² erg/s	10 ⁻¹⁵ erg/cm²/s	eV	Yoneyama+ 2019 De Grandis, MR+ 2022b
J0420.0–5022	0.13±0.02	1.8		2BB+PL
J0720.4–3125	2.1±0.6	0.5	255±30	G*2BB
J0806.4–4123	1.5±0.2	0.2	240±10	G*2BB
J1308.6+2127	16.0±0.2	0.13	390±6	G*2BB
J1605.3+3249	5.1±1.4	_	350±50	G*2BB
J1856.5–3754	0.44±0.01	1.8		2BB+PL
J2143.0+0654	9.7±7.3	0.09	325±70	G*2BB

see also Dessert+ 2020, ApJ

Effective area

