
IXPE observations of supernova remnants: first results

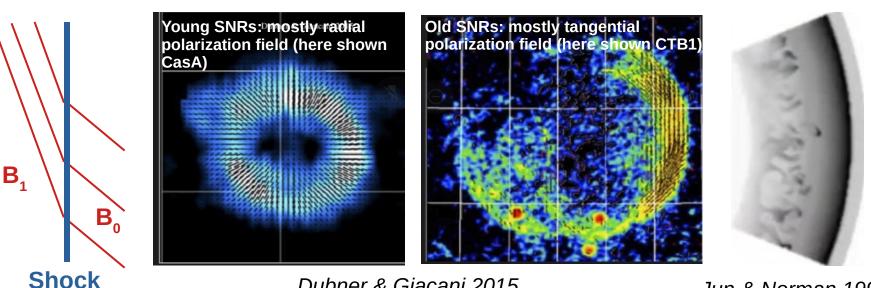
Riccardo Ferrazzoli (INAF-IAPS) on behalf of the IXPE SNR TWG and IXPE Science Team (https://ixpe.msfc.nasa.gov/partners_sci_team.html) riccardo.ferrazzoli@inaf.it

> CNOC XII – Congresso Nazionale Oggetti Compatti Sep 27 – 30, 2022 Cefalù

MAGNETIC FIELDS AND PARTICLE ACCELERATION KEY SCIENCE TOPICS

- Particles scatter from turbulence in background plasma
 - Pre-existing, or generated by streaming ions themselves
- Efficient acceleration requires strong, turbulent B-fields

- $E_{_{max}}$ depends on turbulence on scales of $\lambda_{_{mfp}} \approx r_{_g}$

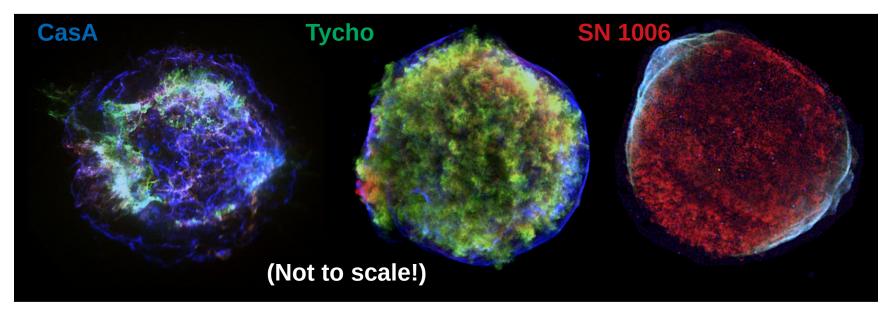

- Synchrotron emission produced by relativistic electrons is polarized
 - Thin X-ray rims (1017 cm) due to short lifetime of energetic electrons

X-ray polarization probes fields and turbulence very close to the shocks! § 2

(M. Scholer)

MAGNETIC FIELDS AND PARTICLE ACCELERATION **KEY SCIENCE TOPICS**

Dubner & Giacani 2015


Jun & Norman 1996

- Shock compresses tangential component of the ambient magnetic field: reasonable to expect largely tangential field in post-shock region.
- Radio observations show tangential field in old remnants, but radial in young SNRs. Why?
 - Radial stretching from instabilities (e.g. *Gull 1973, Inoue et al. 2013*)
 - "Selection effect" due to observation of radiation only along radial field where acceleration is more efficient (e.g. West et al 2017).

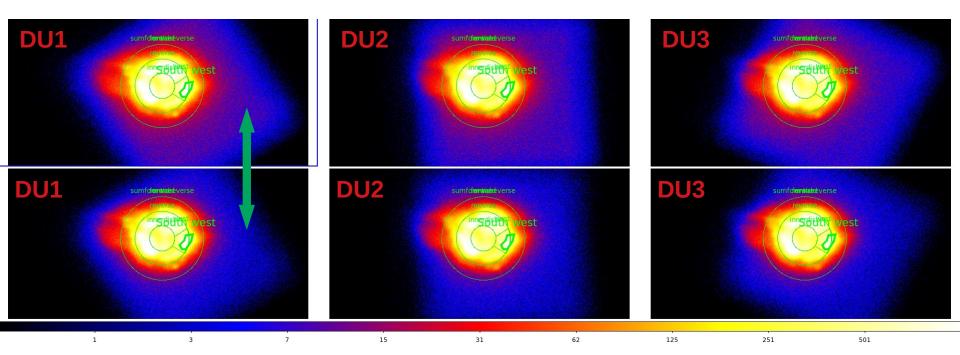
SNR WITH IXPE THE THREE TARGETS

CasA, **Tycho**, and **SN 1006** are part of the IXPE 1st year observation plan.

Observed in January 2022 900 ks **Results published!** Observed in June-July 2022 770 ks Data analysis ongoing Observed in August 2022 600 ks We just got the data

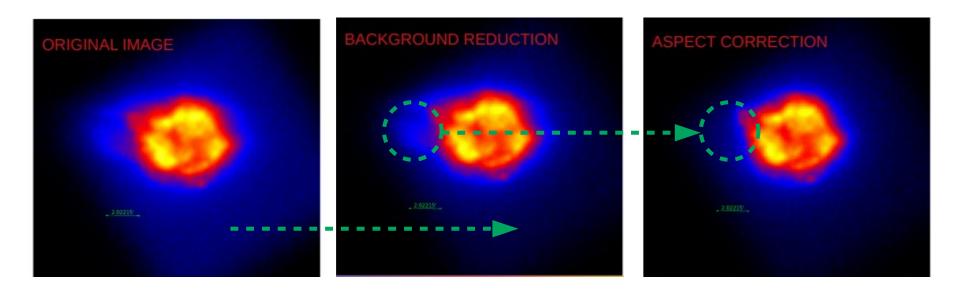
Vink et al. 2022, arXiv:2206.06713

IXPE OBSERVATION OF CAS A SOURCE AND OBSERVATION CHARACTERISTICS


- * 350 yr old Core-collapse SNR (2.6 pc radius);
- * X-ray emission:
 - Bright line emission;
 - Synchrotron-dominated continuum;
 - Reverse shock present;
- * First IXPE science target;
- * Observed in January 2022;
- * 1 Ms nominal exposure (~900 ks actual);
- * Dithered observation.

Purple: IXPE Blue: Chandra

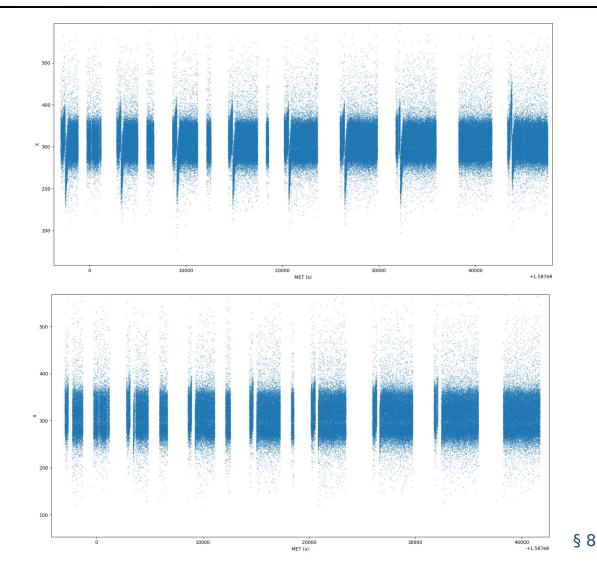
@ NASA HEASARC


IXPE OBSERVATION OF CAS A BACKGROUND REJECTION

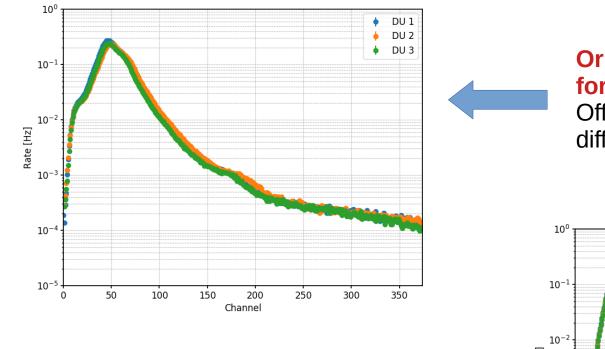
The image becomes cleaner!

IXPE OBSERVATION OF CAS A PARTICLE BACKGROUND REJECTION AND BAD-ASPECT TIME REMOVAL

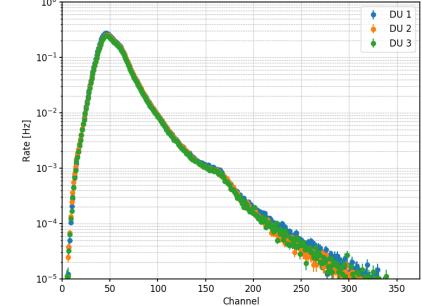
The image becomes cleaner!


Removal of spurious motion caused by thermally-induces boom oscillation further improves the image!

IXPE OBSERVATION OF CAS A BAD-ASPECT REMOVAL

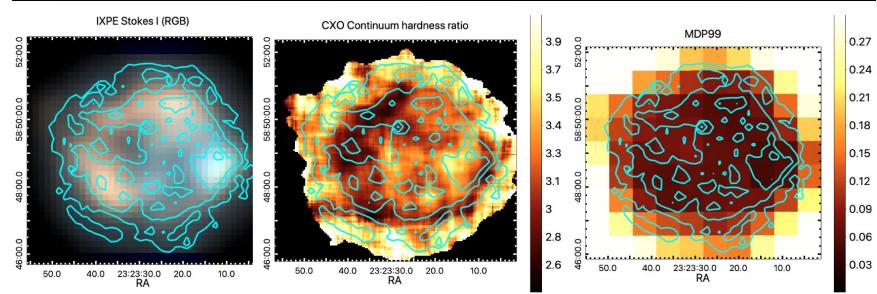

Before bad-aspect time removal

After bad-aspect time removal



IXPE OBSERVATION OF CAS A ENERGY CORRECTION AND PARTICLE BACKGROUND REJECTION

Original files spectra for each DU: Offset because of different detector gain



Bkg-filtered Spectrum

after energy correction with on board calibration sources

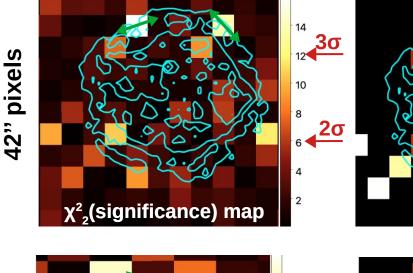
IXPE OBSERVATION OF CAS A SENSITIVITY TO POLARIZATION

Energy resolution shows regions where synchrotron (polarized) emission dominates thermal (unpolarized)

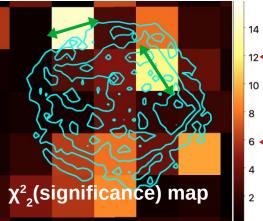
Vink et al. 2022, arXiv:2206.06713

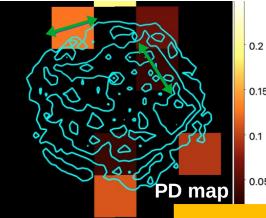
Sensitivity to polarization varies from **5 – 20%** for **42**" pixels

- Lower for larger regions, but then, decoherence is a potential issue, depending on geometry § 10



IXPE OBSERVATION OF CAS A PIXEL-BY-PIXEL SEARCH

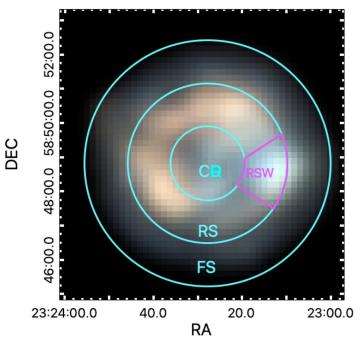

Green arrows: polarization direction


3σ

2σ

- Some indication of polarization on small scales, but marginally
 ^{0.2} significant given the
- number of bins.
- FACT: Polarization degree is low on some spatial scales, must be
 <4% in inner regions, 15% - 20% in outer region.
- HINT: for marginally significant bins,
 polarization direction appears tangential (corresponding to radial B)

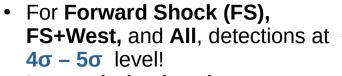
Vink et al. 2022, arXiv:2206.06713



IXPE OBSERVATION OF CAS A LARGE-SCALE SEARCH

- No solid detections from pixel-by-pixel search: **PD is low, but how low?**
- Expectations: either radial (from radio) or tangential (shock compression) B-field.
- Cas A is spherically symmetric → improve the statistics by summing over large regions by assuming a circular symmetry to the polarization direction.
- CR: Central Region (mostly thermal emission);
- RS: Reverse Shock;
- RSW: Reverse Shock West;
- FS: Forward Shock;
- FS+RSW: Forward Shock and Reverse Shock West
- (most non-thermal emitting regions);
- All: whole SNR.

Vink et al. 2022, arXiv:2206.06713


 4.8σ

 4.9σ

 87.2 ± 5.4

 85.7 ± 5.2

RESULTS LARGE-SCALE SEARCH

175°

- Low polarization degree: 2% - 3.5% (2.5% - 4.5% after accounting for thermal dilution) implying very turbulent magnetic field ;
- Polarization angle implies radial B-field dominates within 10¹⁷ cm of shock;
- Similar morphology than radio, • but lower polarization degree.

radial U

25°

Central region (CR) 0 65

150

radial 0°

25°

1 Day

50°

75°

100

RS

125

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

175°

15

100

 $FS + RSW^{f}$

A11

 $R_{\rm max}$ (%) (%) (%)(arscec) (arcsec) < 3.1< 3.7652.4Reverse shock (RS) 1401.3 1.6 ± 0.4 2.2 ± 0.6 RS West (RSW) e65 2.6< 3.9140 < 5.1

1.7

1.0

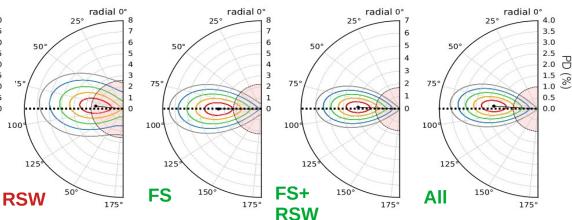
216

216

216

0

b $Angle^d$ Significance R_{\min} PD Corrected^c MDP99 Pol. Degree (°) N/A 0.9σ 77.2 ± 7.6 3.1σ N/A 1.9σ 4.5 ± 1.0 Forward shock (FS) 3.5 ± 0.7 89.8 ± 6.1 1402162.3 4.1σ


 3.0 ± 0.6

 1.8 ± 0.3

 3.8 ± 0.7

 2.5 ± 0.5

Vink et al. 2022, arXiv:2206.06713

50

75°

100

CR

125

150

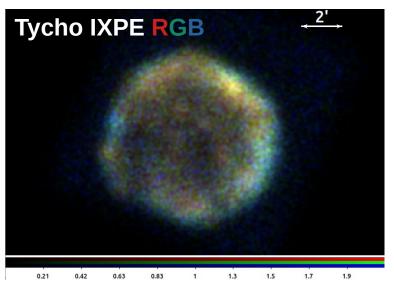
MDP99

1σ

2σ

3σ

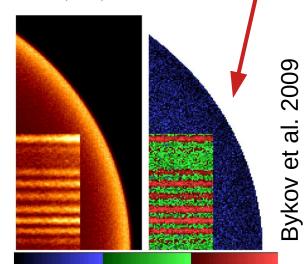
4σ


tangential

.

. 5σ

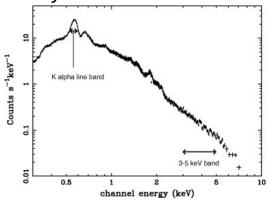
IXPE OBSERVATION OF TYCHO STAY TUNED FOR RESULTS!



Tycho, Chandra 4 – 6 keV, Erikssen et al. 2011

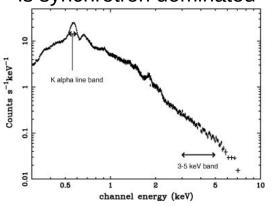
- Thin synchrotron X-ray rims around most of SNRs: search for small scale polarization associated with turbulence scale (e.g. Bykov et al. 2021)
- Distinct stripe-like structures observed in discrete regions:
 Sites of acceleration to higher energies?
 Field direction correlated with stripes orientation?

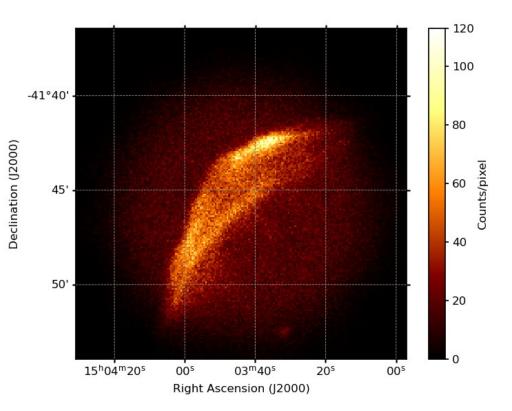
IXPE observation of Tycho is complete, and analysis is underway!


Ferrazzoli et al., in preparation

IXPE OBSERVATION OF SN1006 STAY TUNED FOR RESULTS! (WITH A BIT MORE PATIENCE...)

- Thin synchrotron X-ray rims in NE and SW
 - presumably indicative of ambient field orientation
 - Search for variation in polarization angle and acceleration efficiency
- Unlike Cas A and Tycho, spectrum is synchrotron dominated


- SNR is VERY large, we covered only NE rim in Year 1.
- Observation completed, data just delivered.



IXPE OBSERVATION OF SN1006 STAY TUNED FOR RESULTS! (WITH A BIT MORE PATIENCE...)

- Thin synchrotron X-ray rims in NE and SW
 - presumably indicative of ambient field orientation
 - Search for variation in polarization angle and acceleration efficiency
- Unlike Cas A and Tycho, spectrum is synchrotron dominated

- SNR is VERY large, we covered only NE rim in Year 1.
- Observation completed, data just delivered.

Zhou et al., in preparation

• X-ray polarization in SNRs probes magnetic field and turbulence information:

 -probes regions close to the shock;
 -provides crucial information on particle acceleration in SNR shocks.

• X- ray Polarization detected in Cas A!

-Polarization degree lower/no higher than radio: ~5%; -Orientation implies that radial magnetic field originates very close to the shocks in SNRs.

• Recent observations of Tycho and SN1006 will provide polarization information for young type Ia SNRs.

Breakthrough science with IXPE!

Thank you for your attention!