What's so great about accreting white dwarfs? A brief (and biased!) review

Simone Scaringi

simone.scaringi@durham.ac.uk

Durham University

1) Why study accretion? Why accreting white dwarfs?
2) Aperiodic variability properties
3) Magnetic gating vs. Type-II bursts
4) Transitional accreting white dwarfs vs. tMSPs
5) Micronovae vs. Type-I bursts

Accretion across the scales

- Disk theory supposedly the same across different system types
- Disk dynamics governed by the embedded gravitational potential:

	BHs/NSs (XRBs)	WDs (CVs)	YSOs	AGN
Surface	$\sim \mathrm{km}$	\sim thousand km	~ 10 million km	~ 10 million km
Emission	X-rays	Opt/UV	IR/Opt	UV/X-rays
$\mathbf{t}_{\text {dyn }}$	~ 1 millisecond	~ 10 seconds	~ 2 days	~ 2 days
Dynamic Range	$\sim 10^{7}$	~ 300	$\sim 10^{6}$	$\sim 10^{8}$

Accretion disk instabilities

V344 Lyrae with Kepler

TESS atlas of AWD - Cycle 3

Broad-band variability

Power spectral densities: some examples

Belloni+ (2002)
McHardy+ (2007)
Scaringi+ (2012b)

White dwarf

The accretion variability plane

1) Need both novalikes (high Mdot) and dwarf nova in quiescence (low Mdot)
2) Where is the outer disk edge?
-> Need longer obs.

Veresvarska \& Scaringi (2022, submitted)
Figure 1. Time-averaged PSD of SDSS J1908 +3940 with the segment length of 60 days and
frequency regime and low frequency masked out data below the segment window length limit.

Magnetic gating

vS.

Type II X-ray bursts (a.k.a. Rapid bursters)

Magnetically gated accretion

Magnetically gated accretion

Type-II burst equivalent in XRBs

Disk-WD co-rotation radius
$P_{s}^{2}=\frac{4 \pi^{2} R_{c o}^{3}}{G M_{W D}}$
Critical mass transfer rate
$\dot{M}_{c r i t}=\frac{\eta \mu^{2} P_{s}}{8 \pi R_{i n}^{5}}$

transitional Accreting White Dwarfs (tAWDs)

VS.

transitional Millisecond Pulsars (tMSPs)

PSR J1023+0038

Moding caused by accretion on/off state

e.g. Archibald+ (2015)

TW Pictoris

Type I X-ray bursts

vs.

Micronovae

TV Columbae ...a brief history...

AN UNPRECEDENTED UV/OPTICAL FLARE IN TV COLUMBAE
 Paula Szkody ${ }^{1}$ and Mario Mateo ${ }^{2}$
 Department of Astronomy, University of Washington
 Received 1983 August 8; accepted 1983 November 23

Abstract

We report a surprising, 2 mag, short time scale (hr) outburst of TV Col (2A 0526-328) observed simultaneously at IUE and optical wavelengths in 1982 November. During this "flare," the IUE emission lines of N v $\lambda 1240$, C iv 21550 , and He II $\lambda 1640$, intensified by more than an order of magnitude and developed P Cygni profiles, indicating mass loss. Continuum fits with a power law plus a blackbody from the UV through the optical showed a steepening of the UV power-law component and an increase in the temperature and size of the blackbody component during the flare activity. We discuss this unusual behavior in terms of an accretion disk instability. Subject headings: stars: accretion - stars: dwarf novae - stars: flare - stars: individual - ultraviolet: spectra

TV Columbae
 ...a brief history...

Fig. 1.-Simultancous UBV photometry for 1982 November 22 UT. Each point is a 10 s integration with statistical uncertainty of less than 0.02 mag IUE coverage began at the arrow and continued past the end of the optical data. Phases at the top are for the photometric variation according to the ephemeris by Hutchings et al. (1981).

TV Columbae ...a brief history...

- High ionisation Hell and NV lines appear during burst and persist for~1 month
- P-Cygni profile suggests outflows of $\mathbf{>} \mathbf{2 5 0 0} \mathbf{~ k m} / \mathrm{s}$ only at peak luminosity

TV Columbae ...with TESS...

Scaringi+ (2022b)

El UMa and ASASSN-19bh ...with TESS...

Micronovae vs. Type I X-ray bursts

How to trigger micronovae?

To ignite, we require:
$P_{\text {col }} \approx P_{\text {crit }}>10^{18} d y n \mathrm{~cm}^{-2}$

As long as magnetic confinement of material holds:

$$
t_{r e c}=\frac{M_{c o l}}{\dot{M}_{a c c}}
$$

Problem:

As column pushes into WD, at what depth do triggering conditions occur? (spoiler: maybe too deep)

THE FIRST

VASTO ACCRETION MEETING

Open questions

Broad-band variability

- How does disk geometry/viscosity change with Mdot and radius? Do AWDs have an analogous "corona" as seen in XRBs?

Mag. Gating

- Why only a handful of AWDs show this? What are the "optimal" parameters to initiate mag. Gating? Does it happen in a specific evolutionary phase?
tAWD
- What causes the abrupt drops in luminosity/sudden reduction in Mdot? Can we make direct analogies to tMSPs? How are these related to mag. Gatiting and/or evolution?

Micronovae

- What triggers these, and how common are they? What are the implications of common micronovae to chemical enrichment and multi-messenger emission?

Magnetically gated accretion bursts in MV Lyrae

Rapid Bursters

- Accreting neutron stars with excess power in the kHz regime
- Only a handful known to date
- Very short bursts (few seconds)
- Best explained through magnetically gated accretion

AR Sco

WD pulsar: when and how did it "turn off"?

The accretion variability plane

$\log v_{b}=$

$$
\begin{aligned}
& A \log M+ \\
& B \log R+ \\
& C \log \dot{M}+D
\end{aligned}
$$

Caveat:

Frequency breaks can be wavelength dependent

V2487 Oph ...with Kepler...

- About 60 bursts observed in a Recurrent Nova
- Explained through mag. reconnection?

DW Cnc
 IP

The return of the spin period in DW Cnc and evidence of new high state outbursts

C. Duffy, ${ }^{1,2 \star}$ G. Ramsay, ${ }^{1}$ D. Steeghs, ${ }^{2,8}$ M. R. Kennedy, ${ }^{3,4}$ R. G. West, ${ }^{2}$ P. J. Wheatley, ${ }^{2}$ V. S. Dhillon, ${ }^{5,6}$ K. Ackley, ${ }^{2,7,8}$ M. J. Dyer, ${ }^{5}$ D. K. Galloway, ${ }^{7,8,9}$ S. Gill, ${ }^{2}$ J. S. Acton, ${ }^{10}$ M. R. Burleigh, ${ }^{10}$ S. L. Casewell, ${ }^{10}$ M. R. Goad, ${ }^{10}$ B. A. Henderson, ${ }^{10}$ R. H. Tilbrook, ${ }^{10}$ P. A. Strøm, ${ }^{2}$ D. R. Anderson ${ }^{2}$

Abstract

DW Cnc is an intermediate polar which has previously been observed in both high and low states. Observations of the high state of DW Cnc have previously revealed a spin period at $\sim 38.6 \mathrm{~min}$, however observations from the 2018/19 low state showed no evidence of the spin period. We present results from our analysis of 12 s cadence photometric data collected by NGTS of DW Cnc during the high state which began in 2019. Following the previously reported suppression of the spin period signal we identify the return of this signal during the high state, consistent with previous observations of it. We identify this as the restarting of accretion during the high state. We further identified three short outbursts lasting $\sim 1 \mathrm{~d}$ in DW Cnc with a mean recurrence time of $\sim 60 \mathrm{~d}$ and an amplitude of ~ 1 mag. These are the first outbursts identified in DW Cnc since 2008. Due to the short nature of these events we identify them not as a result of accretion instabilities but instead either from instabilities originating from the interaction of the magnetorotational instability in the accretion disc and the magnetic field generated by the white dwarf or the result of magnetic gating.

V1223 Sgr
 ...IP...

State changes + jets in WDs

Accretion-driven flickering

Density-driven Instabilities?

Accretion disk instabilities

	SS Cygni
	WLU
	Wudhumundurim
	Wumbuamodumumbl
	Cutwem
	mim
	LLMMUMWULum
	Munduchlumuld
	WULIUWLLL
	Whadumbundud
	(

The many

Broad-band variability

Fig. 1: Light curve of SS Cyg of 1983, Aug. 12, as an example for the formal definition of flickering flares. The base points and peaks of individual flares recognized as significant are marked by squares. The limiting amplitude for a flare was chosen to be $0{ }^{\mathrm{m}} 03$.

TESS atlas of AWD - Cycle 2

TV Col, El UMa and ASASSN-19bh ...with ASASSN...

TW Pictoris
 including Cycle 1 and ASAS-SN

TW Pictoris

TW Pictoris

Pess

TESS 2-year sky coverage map

K2 Campaigns 0 through 19 (2014-2018)

AWD laboratories

 can we infer Mdot using Gaia distances?

What next? PLATO \& TESS

Launch 2024

State changes in XRBs

Spectral Hardness

 (soft=more thermal, hard=more nonthermal)
State changes in XRBs

Fender+ 2004, Meyer+ 2005, Meyer-Hofmeister+ 2005, Belloni+ 2005, etc...

Jets launching: ubiquitous mechanism?

AGN states

AGN population studies show similar HID diagrams to XRBs and AWDs (caveat selection effects!)

Figure 7. DFLD showing the average radio loudness for SDSS quasars and LLAGN from the Hd (1999) sample. Note that the gap between LLAGN and Quasars is an artefact of our sample selection.

Koerding+ (2006)

The rms-flux relation

- Flux distributions are log-normal \rightarrow Additive processes ruled out!
- Observed lightcurves must be the result of multiplicative processes

Coherence \& Fourier-dependent lags

Fourier frequency-dependant measure of the linear correlation between 2 time series observed simultaneously in two energy channels

Fourier-dependent time lags

Fourier time-lags in CVs

Soft lags hard
AGN

Time-scale consistent with time-travel delay

Red lags blue
CV

Time-scale longer than time-travel delay: disk thermal reprocessing?

Fluctuating Accretion disks

Fluctuating Accretion disks

Fluctuating Accretion disks

YSOs join the family!

Scaringi+ (2015b)

Fluctuating Accretion disk: how can we test for "corona" in CVs?

What is this?

Type I X-ray bursts in AWDs?

Z Cha \& EX Dra

EX Dra

Court+ (2019)
Court+(2020)

Z Cha

Outside-in outburst evolution

Court+ (2019)
Scaringi+ (2013)

Clear hysteresis during dwarf nova outburst evolution

Z Cha

Outside-in outburst evolution

$$
\begin{aligned}
L\left(\dot{M}, R_{\text {out }}\right)=\frac{1}{2} \int_{R_{\text {in }}}^{R_{\text {out }}} \sigma & \pi R T^{4}(R) \mathrm{d} R \\
& \propto \dot{M}\left(\frac{2 \sqrt{R_{*}}}{3 R_{\text {out }} \sqrt{R_{\text {out }}}}-\frac{1}{R_{\text {out }}}+\frac{1}{3 R_{*}}\right)
\end{aligned}
$$

Hysteresis must be caused by outer disk size increasing before mass transfer rate increase
\rightarrow outside-in outburst

EX Dra

Inside-out outburst evolution

Hysteresis must be caused by mass transfer increasing before outer disk radius
\rightarrow inside-out outburst

AQ Men
 exploring the tilted disk

AQ Men

exploring the tilted disk

ID	Frequency [c/d]	Amplitude $[\mathrm{e} / \mathrm{s}]$	MJD_{0}
ω_{0}	$7.06869(13)$	$24.66(17)$	$58667.68379(16)$
$2 \omega_{+}$	$13.29413(28)$	$11.25(17)$	$58667.67647(18)$
ω_{+}	$6.64591(34)$	$9.42(17)$	$58667.71802(42)$
N	$0.42093(41)$	$7.78(17)$	$58668.449(8)$
$2 \omega_{0}$	$14.13860(41)$	$7.70(17)$	$58667.64725(24)$
$2 \omega_{0}-\mathrm{N}$	$13.71513(44)$	$7.28(17)$	$58667.70072(27)$
$4 \omega_{0}$	$28.27526(60)$	$5.29(17)$	$58667.68000(18)$
$3 \omega_{0}$	$21.20627(62)$	$5.10(17)$	$58667.69222(25)$
ω_{-}	$7.4890(10)$	$3.42(17)$	$58667.69220(11)$
$2 \omega_{0}-3 \mathrm{~N}$	$12.8742(11)$	$3.08(17)$	$58667.7019(7)$
$3 \omega_{+}$	$19.9415(11)$	$3.11(17)$	$58667.65870(43)$
$3 \omega_{0}-2 \mathrm{~N}$	$20.3658(11)$	$2.91(17)$	$58667.69293(45)$
$\omega_{0}-2 \mathrm{~N}$	$6.2228(12)$	$2.84(17)$	$58667.7486(15)$
$6 \omega_{0}$	$42.4152(12)$	$2.71(17)$	$58667.66454(24)$
$5 \omega_{0}$	$35.3431(13)$	$2.56(17)$	$58667.67009(30)$
$4 \omega_{0}-2 \mathrm{~N}$	$27.4305(14)$	$2.32(17)$	$58667.68465(42)$
$7 \omega_{0}-6 \mathrm{~N}$	$46.9523(15)$	$2.11(17)$	$58667.68200(27)$
$7 \omega_{0}$	$49.4830(17)$	$1.89(17)$	$58667.68073(29)$
$2 \omega_{0}+\mathrm{N}$	$14.5574(19)$	$1.68(17)$	$58667.6597(11)$
$4 \omega_{+}$	$26.5834(21)$	$1.53(17)$	$58667.68059(65)$
$3 \omega_{0}-\mathrm{N}$	$20.7830(21)$	$1.51(17)$	$58667.67364(84)$
$6 \omega_{0}-5 \mathrm{~N}$	$40.3054(24)$	$1.36(17)$	$58667.66312(49)$
$8 \omega_{0}$	$56.5535(29)$	$1.09(17)$	$58667.67454(44)$
$6 \omega_{0}-4 \mathrm{~N}$	$40.7268(32)$	$0.99(17)$	$58667.66489(66)$

Ilkiewicz+ (2021)

AQ Men

exploring the tilted disk

Eclipse depth variations on tilted disk precession period

Ilkiewicz+ (2021)

Accretion-driven flickering

Accretion-driven flickering

State changes + disk winds

Ponti+ (2012)

What about accreting WDs?

Accretion disk instabilities

Fluctuating Accretion disks

1) Fix $M_{W D} \rightarrow R_{W D}$ (mass-radius relation)
2) Set $r_{i n}=R_{w D}$
(assume disk extends to WD surface)
3) Fit 4 free parameters:

$$
\begin{array}{ll}
r_{\text {out }} & = \\
\alpha(h / r)^{2}= & \text { viscos disk radius } \\
& \\
& \text { disk scale height } \\
Y & = \\
F_{v a r} \quad & \text { emissivity index } \\
& \text { fractional variability } \\
& \quad \text { per radial decade }
\end{array}
$$

Fluctuating Accretion disk: what generates the variability?

Geometrically thick disk close to the WD with large viscosity parameter?
also inferred from eclipse mapping studies:
Feline+ (2005), Wood+ $(1986,1992)$, Groot+ $(2000,2004)$, Baptista\&Bortoletto (2004), etc...

The Disk Instability Model

Accretion-driven flickering: YSO variability

Fourier time-lags in CVs

WHT/ULTRÅCAM

Fluctuating Accretion disk: what generates the variability in XRBs?

Sco X-1 with K2

(-8)

Sco X-1 with K2

Scaringi+ (2015a)

X-ray/optical DCF

The Cepstrum

- Used to find echoes in time-series data
- Developed for earthquakes/bomb explosion studies

$$
\text { power cepstrum of signal }=\left|\mathcal{F}^{-1}\left\{\log \left(|\mathcal{F}\{f(t)\}|^{2}\right)\right\}\right|^{2}
$$

The Cepstrum

- 3 significant echoes:
- $\rightarrow 1$ hour, 4.4 hours, 12.6 hours

QPOs in MV Lyrae

Dynamic PSD $\rightarrow 5.3$ day segments with 50\% overlap

QPOs in MV Lyrae

Fourier time-lags in CVs

Bispectrum

For frequency pairs $\boldsymbol{k} \& \boldsymbol{I}$, it is defined by:

$$
B(k, l)=\frac{1}{K} \sum_{i=0}^{K-1} X_{i}(k) X_{i}(l) X_{i}^{*}(k+l)
$$

Frequency (Hz)

The rms-flux relation

All Kepler CVs with good enough quality data show it!

KIC $8751494 \quad$ van de Sande + (2015)
(nova-like)

V1504 Cyg
(dwarf nova)

Fluctuating Accretion disk

Image credit: Phil Uttley

What next?

Gaia - IPHAS - UKIDSS - TESS

XGAPS
 Gaia EDR3 - IGAPS - UKIDSS

34 million matches

Random Forest used to select "good" astrometric sources U,g,r,i,Ha,J,H,K + Gaia

Good astrometric sources

Bad astrometric sources

XGAPS

Gaia EDR3 - IGAPS - UKIDSS - TESS

96.2%	98.9%
3.8%	1.1%
0	1 Predicted Class

XGAPS

Gaia EDR3 - IGAPS - UKIDSS - TESS

Predictor Name	Predictor Importance
pmra	11.68
pmdec	9.07
bMJD_separation_UVEX	4.30
bMJD_separation_IPHAS	4.26
ipd_frac_multi_peak	4.06
ipd_gof_harmonic_amplitude	3.61
astrometric_n_good_obs_al	2.67
astrometric_n_obs_al	2.65
scan_direction_mean_k1	2.53
parallax_error	2.42
scan_direction_mean_k2	2.24
scan_direction_mean_k3	2.22
ruwe	1.96
astrometric_excess_noise_sig	1.84
astrometric_gof_al	1.81
astrometric_excess_noise	1.74
pmdec_error	1.70
redChi2	1.64
scan_direction_strength_k1	1.57
astrometric_sigma5d_max	1.50
ipd_frac_odd_win	1.49
scan_direction_mean_k4	1.49
astrometric_n_bad_obs_al	1.42
astrometric_chi2_al	1.36
pmra_error	1.33
astrometric_n_obs_ac	0.27

Table 1. Out-of-bag predictor importance of all predictors used for classification by the Random Forest classifier ordered according to importance.

What next?

Mapping lightcurves to the Gaia CMD and more...

Iteration

