CNOC XII, Cefalù, 28 September 2022

Recurrent X-ray flares from an extra-galactic globular cluster: QPEs from an IMBH?

Andrea Tiengo

Paolo Esposito, Martina Toscani, Giuseppe Lodato, Manuel Arca Sedda, Sara Motta, Federica Contato, Martino Marelli, Ruben Salvaterra, Andrea De Luca

LETTERS

A black hole in a globular cluster

Thomas J. Maccarone¹, Arunav Kundu², Stephen E. Zepf² & Katherine L. Rhode^{3,4}

- Variability ⇒ single X-ray source in globular cluster
- L_x > 10³⁹ erg/s ⇒ black
 hole

However, pulsating ULXs (Bachetti et al. 2014; Israel et al. 2017...) \Rightarrow neutron stars with L_x > 10³⁹ erg/s

Optical [O III] line: broad, extended and variable

Bright, **broad** and **extended** (~4 pc) emission line \Rightarrow outflow (v ~1600 km/s) and Oxygen excess

Optical [O III] line: broad, extended and variable

THE ASTROPHYSICAL JOURNAL, 877:115 (5pp), 2019 June 1

© 2019. The American Astronomical Society. All rights reserved.

Peculiar Outbursts of an Ultra-luminous Source: Likely Signs of an Aperiodic Disk-wind

A&A 661, A68 (2022) https://doi.org/10.1051/0004-6361/202142662 © ESO 2022

Recurrent X-ray flares of the black hole candidate in the globular cluster RZ 2109 in NGC 4472

A. Tiengo^{1,2,3}, P. Esposito^{1,2}, M. Toscani^{4,5}, G. Lodato⁴, M. Arca Sedda⁶, S. E. Motta⁷, F. Contato⁸, M. Marelli², R. Salvaterra², and A. De Luca^{2,3}

- X-ray flares are very soft
 ⇒ clear detection of flare
 also in 3rd orbit, even
 during (hard) particle flare
- Possible recurrence time: ~112 ks (flare during data gap at satellite perigee?)

All available uninterrupted X-ray light curves

X-ray spectrum: 2016 XMM observations

- Flares have same spectrum: diskbb+PL+OVIII line
- Quiescent spectrum is harder: no diskbb and much fainter line
- If inner disk radius
 ~ISCO of non-rotating
 BH with *i*=45° ⇒
 ~1,000 M_☉ black hole

	obs1F	obs1Q	obs2F	obs2Q	obs3F	obs3Q
Γ	$1.9^{+0.1}_{-0.2}$	1.9 ^a	1.9 ^a	1.9 ^a	1.9 ^a	1.9 ^a
PL flux ^b $(10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1})$	3.7 ± 0.4	1.5±0.3	3.3±0.7	1.4 ± 0.2	3.3±0.9	1.1±0.2
$T_{in} (eV)$	143±7	143 ^a	143 ^a	143 ^a	143 ^a	143 ^a
R_{in}^{c} (km)	6400^{+800}_{-600}	<1100	6300^{+800}_{-600}	<1100	4200±600	<900
O viii norm. ^d (10 ⁻⁶ photons cm ⁻² s ⁻¹)	4.2 ± 1.0	0.6 ± 0.4	4.3±1.2	0.5±0.3	5.7±1.3	0.4 ± 0.3

Quasi Periodic Eruptions (QPEs)

• First QPE X-ray source discovered in AGN GSN 069 with XMM-Newton (Miniutti et al. 2019)

- Other 3 (+1 candidate) QPE sources in (active or quiet) galactic nuclei with XMM-Newton, Chandra, NICER and eROSITA (Giustini et al. 2020; Arcodia et al. 2021; Chakraborty et al. 2021)
- Possible interpretation: recurrent partial tidal disruption of a star in eccentric orbit around a (small size: ~10⁵⁻⁶ M_☉) SMBH (King 2020, 2022; Zhao et al. 2022; Nixon & Coughlin 2022)

Similarities (and differences) with QPEs

Flare duration (~10 ks) longer than most QPEs, but larger separation (~112 ks) ⇒ similarly short duty cycle (shortening with time?)

Analogies (and differences) with QPEs

- Flare duration (~10 ks) longer than most QPEs, but larger separation (~112 ks) ⇒ similarly short duty cycle (shortening with time?)
- Spectrum: flare is very soft (similar to QPEs), but no significant spectral evolution during flare and hard quiescent emission (with no disc component)
- Crowded environment: globular cluster favours close stellar encounters ⇒ TDE or pTDE
- If pTDE and M_{BH}~1,000 M_☉: white dwarf, grazing encounter (0.45<β<0.55) and very eccentric orbit (e>0.95)
- [O III] and O VIII lines from photoionization of unbound debris from Oxygen-rich white dwarf

If similarities confirmed by further observations of XMM1229 (or other similar systems) ⇒ a **scaled-down** (and nearby) version of **QPE** sources might help us to interpret them