Isolated neutron stars with eROSITA

Adriana Mancini Pires Jan Kurpas, Axel Schwope (AIP)

K. Dennerl, M. Freyberg, F. Haberl (MPE), V. Suleimanov (IAAT)

And collaborators: G. Ashton, W. Becker, J. Comparat, W. C. Ho, G. Lamer, P. Lasky, A. Karpova, C. Maitra, A. Meisner, C. Motch, J. Moustakas, A. Potekhin, M. Salvato, Y. Shibanov, F. Valdes, I. Traulsen, D. Tubin-Arenas, D. Yakovlev, D. Zyuzin

Outline

Isolated neutron stars in the Milky Way

Early results of SRG/eROSITA

- Deep pointing observations of the magnificent seven
- The all-sky survey: blind searches and promising candidates

Follow-up and synergy

- XMM2ATHENA: 4XMM J022141.5-735632
- Continuous gravitational waves from Einstein@Home

How many neutron stars in the Milky Way?

Today: over 3300 catalogued

(radio; over 310 new FAST additions)

Fermi Pulsar Revolution:

(over 200 LAT detections)

SKA: potentially detect all pulsars beamed towards Earth

© MPIfR, M. Kramer

1 : 1000 active pulsar/radio-quiet INS

ROSAT expectations

Detect the slowly moving, old, isolated ISM accretors

- $\bullet \gtrsim 10^3 \ predicted$
- 7 discovered; "magnificent"
- no accretors ... but coolers

- a legacy of ROSAT
- X-ray bright, soft, purely thermal
- nearby, low absorbed (within 0.5-1 kpc)
- faint optical/UV counterparts
- no accretion, no (?) hard tails, "constant"

C United Artists

MPE

Relevance

- Distance, luminosity, age, undisturbed emission from the stellar surface
- Cooling theory and atmosphere \rightarrow equation of state

M7 as evolved ("waning") magnetars? \longrightarrow Population and birthrate

- long *P*, high L_X/\dot{E} , high *B*-field
- Evolution through *B*-field decay: "normal" pulsars do not tell the whole story Viganò, Rea, Pons, Borghese → the Neutron Star Zoo

0.3-2.3 keV - RGB

Millions of X-ray sources

INS forecast (Pires+17) About 100 all-sky after 4 yr; $\gtrsim 10^{-14}$ erg s⁻¹ cm⁻²

More absorbed. younger and hotter

Median distance $\sim 2 \, \text{kpc}$

20-30% bright enough for follow-up campaigns

eROSITA bubbles Predehl+20 (nature)

eFEDS papers

 $t_0 - 4 h$

Dust scattering halo

around a BH

Lamer+21

Design: clusters and cosmology

Transients Rau+MPE, TDEs Arcodia+21 (nature)

> Nova fireball Koenig+22 (nature) $t_0 + 4 h$

 t_0

eBOSITA on board SBG

© MPE, Predehl+20

Some specifications

Mirror modules	7
Energy range	0.2–10 keV
Field-of-view	1°
Angular resolution	$< 15^{\prime\prime}$ on-axis
Energy resolution	60–80 eV
Time resolution	50 ms

< ロト < 同ト < ヨト < ヨト

	TM1	TM2	TM3	TM4	TM5	TM6	TM7	QE12346	QE57
C-K at 0.277 keV	58±0.3	58±0.3	58±0.4	58±0.3	50±0.2	58±0.4	49±0.2	12.4±1.7 %	31.3±4.4 %
O-K at 0.525 keV	64±0.2	65±0.3	66±0.3	64±0.2	57±0.3	63±0.2	56±0.4	42.2±1.6%	51.3±2.1%
Cu-L at 0.93 keV	70±0.3	74±0.3	72±0.3	70±0.3	68±0.3	70±0.3	68±0.3	80.0±4.5 %	83.2±4.7 %
Al-K at 1.49 keV	77±0.3	82±0.3	80±0.3	77±0.3	75±0.3	77±0.3	77±0.2	94.0±4.1 %	$94.8 {\pm} 4.2 \%$

Step up wrt XMM-Newton EPIC!

Comparable effective area (0.3–2 keV), much better energy resolution: \rightarrow better characterisation of spectral lines and ISM absorption

AIP

eROSITA timeline

э

イロト イロト イヨト イヨト

Adriana Mancini Pires (AIP) Isolated neutron stars with eROSITA (CNOC XII, September 29 2022, Cefalù)

Early results: pointed observations of the M7

RX J1605.3+3249: Long-term spectral and flux variations

First eROSITA epoch (32 ks)

Consistent with AO14 Large Programme 310 ks + 2012 60 ks (Pires+14, Pires+19; Malacaria+19)

Second eROSITA epoch (59 ks)

Hotter and smaller "spot", lower flux additional absorption feature(s)

Third eROSITA epoch (55 ks)

Returning to its original state

 \longrightarrow change of spectral state confirmed by XMM-Newton DDT (Frank Haberl; 25 ks, July 2021)

RX J2143.0+0654: spectral complexity, higher spin-down

Zane+04, Kaplan & van Kerkwijk+09, Schwope+09

 $[\]rightarrow$ NICER campaign in Cycle 4 (PI: Pires)

不得下 イヨト イヨト

RX J2143.0+0654: spectral complexity, higher spin-down

Zane+04, Kaplan & van Kerkwijk+09, Schwope+09

 \rightarrow NICER campaign in Cycle 4 (PI: Pires)

< B.

A 3 >

Early results: INS candidates from eRASS

Promising targets starting to emerge (Kurpas et al., in preparation)

Catalogue cross-matching, colour cuts (Pires+09, Rigoselli+22)

- goal: Complete down to $f_X > 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$
- first results: 38 INS candidates picked from over 10⁵ sources

Dedicated follow-up

- granted: LBT 21AB, SALT 22AB, XMM AO21, Chandra
- (to be) submitted: NICER, XMM AO22

jkurpas@aip.de

474+03 3.314+03 4.604+03 7.164+03 1.234+04 2.254+04 4.294+34 8.394+04 1.654+05

6.459+05 6.52+05 6.589+05 6.75+05 6.379+05 7.69+05 8.51++05 1.050+06 1.479+06

Synergy: 4XMM searches and fulfil programs

Science validation for H2020 XMM2ATHENA

XMM2ATHEN

イロト イボト イヨト イヨト

Synergy: 4XMM J022141.5-735632

Joint analysis XMM/eRASS (6 epochs) + Legacy Survey DR10 (optical/nIR)

obsid	Date	MJD	Duration	GTI
		(days)	(s)	(%)
XMM-Newton				
0674110401 *	2012-02-09	55967.076	31 915	93
0884190401 [†]	2021-07-09	59 405.013	41 417	73
eROSITA				
03716501 [‡]	2020-04-25	58 970.200	1 008	49
03716502‡	2020-10-28	59 155.966	936	47
03716503 [‡]	2021-04-28	59 338.242	1 0 3 7	43
03716504‡	2021-10-30	59 523.091	950	45

Adriana Mancini Pires (AIP)

A possible new thermally emitting INS Pires+22, Rigoselli+22

Stacked DECam ugriz

- \checkmark soft and constant (possibly over ${\sim}30$ years)
- $\checkmark\,$ no catalogued source within 13 σ
- ✓ high X-ray-to-optical flux ratio (>5000)
- ✓ exclude CVs, AGN, BL Lac, SSS etc
- ? radio limits (nothing in Vizier)
- ? pulsations upcoming NICER

Synergy: continuous gravitational wave candidates

- spinning neutron stars
- mass asymmetry (cm-high bumps)
- persistent, nearly monochromatic
- at least $4 \times$ weaker than mergers
- "Louder" candidates
 - young (Crab-like) unless atypical

eROSITA follow-up

- 27 CW candidates (ALIGO O1-O3)
- all-sky blind searches, Einstein@Home
- \longrightarrow 50 eRASS sources with no counterparts

Summary and outlook

eROSITA is truly a powerful discovery machine

- large grasp, stable background, observing cadence
- eFEDS results: survey design requirements can be met

4.4 all-sky scans were completed; eRASS1 data release Q1 2023

Isolated neutron stars: huge step forward

- \longrightarrow promising candidates! population studies, birthrates
- $\longrightarrow\,$ M7: multiple (broad, narrow, phase-dependent) absorption features, spectral complexity, change of spectral state and pulsed fraction
- \longrightarrow detailed investigations (neutron star cooling/atmosphere)

