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Abstract: Imaging Atmospheric Cherenkov Telescopes (IACTs) have revolutionized our
understanding of the universe at very high energies (VHEs), enabling groundbreaking
discoveries of extreme astrophysical phenomena. These instruments capture the brief
flashes of Cherenkov light produced when VHE particles interact with Earth’s atmosphere,
providing unique insights into cosmic accelerators and high-energy radiation sources. A
fundamental challenge in IACT observations lies in distinguishing the rare gamma-ray
signals from an overwhelming background of cosmic-ray events. For every gamma-ray
photon detected from even the brightest sources, thousands of cosmic-ray-induced atmo-
spheric showers trigger the telescopes. This profound signal-to-background imbalance
necessitates sophisticated discrimination techniques that can effectively isolate genuine
gamma-ray events while maintaining high rejection efficiency for cosmic-ray backgrounds.
The most common method involves the parametrization of the morphological feature of
the shower images. However, we know that gamma-ray and hadron showers also differ in
their time evolution. Here, we describe how the pixel time tags (i.e., the record of when
each camera pixel is lit up by the incoming shower) can help in the discrimination between
photonic and hadronic showers, with a focus on the ASTRI Mini-Array Cherenkov Event
Reconstruction. Our methodology employs a Random Forest classifier with optimized
hyperparameters, trained on a balanced dataset of gamma and hadron events. The model
incorporates feature importance analysis to select the most discriminating temporal param-
eters from a comprehensive set of time-based features. This machine learning approach
enables effective integration of both morphological and temporal information, resulting in
improved classification performance, especially at lower energies.

Keywords: machine learning; ensemble learning; imaging atmospheric Cherenkov
telescopes; gamma/hadron separation; image analysis; pattern recognition

1. Introduction
The ground-based observation of Gamma rays from celestial sources has been made

possible in the last 40 years thanks to the development of the Imaging Atmospheric

Appl. Sci. 2025, 15, 3879 https://doi.org/10.3390/app15073879

https://doi.org/10.3390/app15073879
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8087-6488
https://orcid.org/0000-0002-8151-1990
https://orcid.org/0000-0002-6336-865X
https://orcid.org/0000-0003-4727-9136
https://orcid.org/0000-0002-5880-8913
https://orcid.org/0000-0002-2840-0001
https://orcid.org/0000-0002-6841-1362
https://doi.org/10.3390/app15073879
https://www.mdpi.com/article/10.3390/app15073879?type=check_update&version=2


Appl. Sci. 2025, 15, 3879 2 of 23

Cherenkov Telescope (IACT) technique [1], which exploits the Cherenkov effect to de-
tect gamma photons by observing the effects of their passage through the atmosphere.
Specifically, when gamma rays with energies above a few tenths of GeVs (VHE—Very High
Energy) reach the Earth’s atmosphere, they start a shower of secondary charged particles
traveling with a velocity higher than the light speed in the atmosphere [2]. This produces
a perturbation in the atmosphere’s atoms and molecules that in turn emit a faint blue-
ultraviolet radiation as they regain their equilibrium. This radiation, which comes as an
extended pool of light in the ∼250–900 nm wavelength range, can be detected by large-field
optical telescopes with appropriate ultra-fast electronics since the Cherenkov flash lasts
only a few ns. Therefore, we do not directly observe the primary photon, but we collect the
footprint of its interaction with the atmosphere, which has the shape of an approximate
ellipsoid extended on a few degrees of arc. The information on the incoming direction and
on the energy of the primary Gamma photon can be reconstructed with appropriate image
analysis techniques. The use of an array of several telescopes observing simultaneously the
same sky direction improves the IACT technique, since the detection of the same shower
by more than one telescope allows for an accurate triangulation of the incoming direction
and for a better determination of the energy of the primary gamma-ray photon.

Although the IACT technique is the most effective one for the observation of VHE
sources, its sensitivity is heavily affected by the overwhelming background of charged
cosmic rays (relativistic nuclei and particles from the outer space) that also ignite an
atmospheric cascade with the production of Cherenkov light: in the exemplar case of the
Crab Nebula, one of the brightest persistent sources in the gamma-ray sky, the photon rate
in the relevant energy range is about three orders of magnitude lower than the cosmic-ray
rate. It is thus of paramount importance to find an efficient method to separate the images
generated by gamma-ray photons from those generated by cosmic-ray primary particles
that are not related to the primary target. Usually, this is conducted by exploiting the
morphological diversity among images with different origin [3]: the image of a shower
initiated by a gamma-ray photon has quite a regular elliptical shape, while a hadronic
shower typically has a more irregular shape. This difference can be exploited using a
consolidated set of parameters with good discriminating efficiency, and modern data
processing software that makes large use of machine learning method (see, e.g., [4] and
reference therein).

We know, however, that gamma and hadronic showers differ also for their time evolu-
tion [5,6]. This characteristic can be used, coupled with the morphological parametrization,
to improve the hadron rejection (see, e.g., Figure 1, where two showers with a very simi-
lar morphology show a visibly different time structure). However, the space of possible
parameters derived from the image time characterization has not been fully explored in
the context of ASTRI data reconstruction, although time parameters have been extensively
studied and used for nearly two decades in the analysis of IACT data (see, for example, [7]).
The aim of this paper is to describe a set of several time parameters developed and tested
for the case study of the ASTRI Mini-Array telescopes [8], which are being installed at the
Observatorio del Teide, in the Canary Islands (Spain), in order to evaluate their effectiveness
for the gamma/hadron discrimination.

This work presents several key innovations in gamma-ray/hadron discrimination for
Imaging Atmospheric Cherenkov Telescopes (IACTs). While previous approaches have
primarily relied on morphological and stereoscopic parameters, our study introduces three
significant advances:

1. Novel Integration of Temporal Features: We develop and implement a compre-
hensive temporal parameter selection methodology specifically optimized for the
ASTRI Mini-Array telescope system. This approach goes beyond traditional timing
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measurements by incorporating eight carefully selected temporal parameters that
capture various aspects of shower evolution.

2. Enhanced Discrimination Framework: Our work introduces a specialized Random
Forest implementation that combines both conventional morphological parameters
and temporal features. This hybrid approach enables more robust discrimination
between gamma-ray and hadron events, particularly in the challenging low-energy
regime (below ∼1.5 TeV).

3. Quantifiable Performance Improvement: The integration of our temporal parameter
selection methodology demonstrates a significant enhancement in discrimination
ability, improving the quality factor from 3.32 (using only morphological parameters)
to 3.68 (with selected temporal parameters). This represents approximately a 10.8%
improvement in separation performance.

These advances are particularly significant for the ASTRI Mini-Array context, where
optimizing event discrimination directly impacts the telescope array’s ability to detect
and characterize very high-energy gamma-ray sources. Our approach not only improves
discrimination performance but also provides a framework for incorporating temporal
information that can be adapted for other IACT systems.

In the next subsections, we put our work in the context of the present Cherenkov
experiments, with particular focus on the ASTRI Mini-Array, and on the state of the art
of the use of time parameters in the Cherenkov data analysis. In Section 2, we describe
the data samples considered in this work, while in Section 3, we describe the standard
procedure by which we achieve the gamma/hadron separation for our data. In Section 4,
we describe the set of parameters developed and tested for this work, and in Section 5, we
describe the selection of the most promising ones. In Section 6, we report our performance
results on their effectiveness in the Cherenkov data analysis. In Section 7, we outline our
conclusions and future prospects.

Figure 1. Simulated Cherenkov shower images as observed by an ASTRI Mini-Array telescope,
illustrating the differences in time evolution between different types of events. The image covers the
entire ASTRI field of view (each side spanning approximately 10 deg). The color scale indicates the
time when the pixel is triggered by the incoming Cherenkov photons (see Section 2.3 for details on
the time recording process), with the black, indicating that the pixel has not been triggered. The time
(in ns) increases from blue to white. In this example, the gamma-initiated event (left) evolves slowly
than the hadron-initiated event (right).
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1.1. The ASTRI Mini-Array

The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-Array [8] is
an international project led by the Italian National Institute for Astrophysics (INAF) to
build and operate an array of nine 4-m class IACTs at the Observatorio del Teide (Tenerife,
Spain). The array is designed to be sensitive to energies in the 1–200 TeV energy range,
and to achieve an angular resolution of ∼3′, and an energy resolution of ∼10% above about
10 TeV [9].

The primary scientific objective of the project is to advance gamma-ray astronomy
at TeV and multi-TeV energy scales, contributing to a deeper understanding of topics
such as the origin of cosmic rays, the extra-galactic background light (EBL), and other
fundamental physics questions. They also focus on time-domain and multi-messenger
astrophysics at the TeV and multi-TeV energy scales, as well as on the detection and study of
gamma-ray bursts and multi-messenger transients in the very high-energy (VHE) domain.
Additionally, the ASTRI Mini-Array will conduct stellar intensity interferometry studies.
More information on the ASTRI Mini-Array Core Science program can be found in the
dedicated paper by the ASTRI Collaboration [10].

The first telescope of the ASTRI Mini-Array has been completed and is now in its
commissioning phase. Within 2025, two more telescopes out of the planned nine will
be operative on site. As of today, the prototype telescope ASTRI-Horn [11–13] is fully
operational at the Osservatorio Astrofisico “M.G. Fracastoro” on Mount Etna. The prototype
is used mostly for calibration and test purposes (together with a good fraction of time
dedicated to scientific observation). The Mini-Array telescopes will feature some significant
differences with respect to the ASTRI-Horn setup, among which (and of interest for this
paper) we mention the implementation of the pixel time tag readout (see Section 2).

1.2. Event Reconstruction

The images collected by IACTs are the indirect signature (mostly in the ultraviolet
wavelength band) of the interaction of a VHE photon (or charged particle) with the atmo-
sphere. The data need to be processed to reconstruct the energy and the arrival direction
of the primary event and to discriminate between photon- and hadron-initiated events.
To this aim, several reconstruction steps are required, after the Cherenkov signals recorded
by the telescopes’ cameras have been fully calibrated [14].

• Image Cleaning. The main sources of noise in the images collected by the telescope’s
camera are the night sky diffused background light, electronic noise, and other signals
not related to Cherenkov radiation (e.g., stars). These must be removed in order to
isolate the Cherenkov shower image.

• Image Parameterization. Each atmospheric shower produces a unique Cherenkov
light signature due to the complex cascade of particle interactions in the atmosphere.
To analyze these distinctive patterns, we employ a comprehensive set of morphological
parameters that capture essential features such as the shower’s geometric properties
and the spatial distribution of Cherenkov light across the camera plane.

• Stereo Reconstruction. When the same shower is observed by more than one telescope,
the information from multiple detectors can be combined in order to reconstruct the
full 3D trajectory of the incident primary.

Random Forest Classification Method

For gamma/hadron discrimination, we employ the Random Forest algorithm, a pow-
erful ensemble learning technique particularly well-suited for classification problems in
astroparticle physics. This method is implemented in the ASTRI data reduction and sci-
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entific analysis software package (A-SciSoft v0.7.4 ) [14], establishing our benchmark for
performance evaluation.

Random Forest [15] operates by constructing multiple decision trees during train-
ing, with each tree built from a bootstrap sample (known as “bagging”) of the training
data. The algorithm introduces randomness by considering only a subset of features at
each split point—a technique known as the random subspace method. This approach
ensures diversity among trees and reduces correlation between them, thereby enhancing
the generalization ability of the ensemble.

The combined analysis of morphological parameters and stereoscopic data yields a
detailed characterization of each event. Through this machine learning approach, we derive
both a classification parameter (gammaness) indicating the likelihood of the event being
gamma-ray-induced and an estimate of the primary particle’s energy. For classification
tasks such as distinguishing gamma-ray events from hadronic backgrounds, the final
prediction is determined by majority voting across all trees, while for regression problems
(such as energy estimation), it uses the average of the predictions.

The strength of Random Forest lies in combining numerous “weak learners” (individ-
ual decision trees) into a robust “strong learner” (the forest). Each tree captures different
patterns in the data, and their collective wisdom provides superior predictive performance
compared to any individual tree. For our gamma/hadron separation task, this ensemble
approach effectively handles the complex, high-dimensional feature space created by both
morphological and temporal shower parameters.

Random Forests provide several key advantages over traditional decision trees:

• Reduction in Overfitting: By averaging the predictions of multiple trees, the Ran-
dom Forest mitigates the risk of overfitting that is often associated with individual
decision trees.

• Robustness: The aggregation of multiple trees’ predictions leads to more stable and
reliable outputs, making the model robust to noise and variations in the data.

• Feature Importance: Random Forests inherently provide a measure of feature impor-
tance, allowing for insights into which features are most influential in the prediction
process. This capability proves particularly valuable when evaluating the relative
contribution of temporal features compared to traditional morphological parameters.

We are aware that more advanced Machine Learning techniques could potentially
perform better than Random Forest in this context. However, our aim here is to assess
whether the introduction of time parameters in the analysis procedure provides a significant
performance boost over the standard method based only on morphological and stereo
parameters, and for a fair comparison, we will maintain the use of Random Forest as
already implemented in the ASTRI analysis software A-SciSoft v0.7.4. The optimization of
the method, including the test of different ML techniques and the use of real data from the
ASTRI-1 telescope, will be the subject of a forthcoming paper.

1.3. Time Parameters in IACTs: State of the Art

Beyond the information derived from light intensity, the arrival time of Cherenkov
photons on the camera represents another valuable data dimension. This temporal informa-
tion depends on the geometry of the particle shower, the impact distance of the telescope,
and the altitude of photon emission. The incorporation of time information enhances the
overall performance of Cherenkov telescopes, improving sensitivity, resolution, and energy
threshold capabilities. Here, we delve into various applications of time information in the
analysis of Cherenkov telescope data.

• Image Cleaning. In the case of the MAGIC telescopes, the standard image cleaning
procedure has been enhanced by incorporating temporal constraints alongside the
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traditional intensity-based selection. This refined approach exploits the expectation
that pixels belonging to the shower image light up within a few tens of nanosec-
onds, thereby effectively suppressing contributions from night sky background
fluctuations and other spurious signals [16]. The adoption of this method, particu-
larly after the introduction of a 2 GS/s digitization system capable of recording the
full waveform of pixel signals, resulted in a significant background reduction by a
factor of two and an improvement in sensitivity by a factor of 1.4 for point-source
observations [7,17].

• Time Parameters. Quantities characterizing the temporal profile of the image, such as
time gradient and time RMS, serve as additional inputs (independent of the purely
morphological features) for discriminating hadron-generated signals and estimating
energy and impact distance. Integration of these parameters into the analysis of the
MAGIC telescope data led to a halving of the residual hadronic background while
maintaining the same number of excess events compared to an analysis using only
standard parameters [7].

• Deep Learning Techniques. The use of deep learning, an artificial intelligence tech-
nique employing convolutional neural networks, presents a promising avenue for
classifying Cherenkov telescope images based on both charge and time information.
This approach involves creating two-dimensional maps of pixels containing various
waveform parameters, which, alongside the intensity map, significantly improves
event classification. Tested on simulated data for the future Cherenkov Telescope
Array (CTA), this method exhibited promising results for discriminating proton and
electron backgrounds [18].

Apart from MAGIC, other notable Cherenkov telescopes, such as VERITAS (Very
Energetic Radiation Imaging Telescope Array System) [19] and HESS [20], have also demon-
strated the efficacy of incorporating time information into their data analyses. These
telescopes, like MAGIC, have explored the implementation of advanced algorithms for
image cleaning and the extraction of time parameters, contributing to the refinement of
background discrimination and sensitivity.

The integration of time information into Cherenkov telescopes’ data reconstruction
proves to be a versatile and advantageous technique. Its implementation across various
telescopes showcases its adaptability and potential for enhancing the precision and re-
liability of astrophysical observations. This technique, particularly beneficial for single
telescopes lacking stereoscopic vision of particle showers, underscores the significance of
time as an additional parameter for reconstructing events.

In this paper, we focus on the definition, evaluation, and application of time-derived
parameters for Gamma/Hadron separation in the context of the ASTRI Mini-Array.

2. Data
2.1. Data Samples and Simulation Procedure

The inherent probabilistic nature of Cherenkov radiation necessitates a statistical
approach to reconstructing primary gamma-ray characteristics. Modern analysis relies
on sophisticated Monte Carlo (MC) simulations that model both the atmospheric particle
cascade and the subsequent detector response.

Our simulation framework generates extensive particle event catalogs by sampling
from probability distributions that define the fundamental properties of incoming particles—
their energies, trajectories, and particle types. Each simulated event initiates an atmospheric
cascade, producing a detailed model of secondary particle production and the resulting
Cherenkov light distribution.
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For this analysis, we utilized the comprehensive ASTRI MA Prod2-Teide simulation
dataset [9], which encompasses the following:

• 4 × 107 on-axis gamma-ray events;
• 2 × 108 diffuse electron events;
• 2 × 109 diffuse proton events.

These events were simulated over an area encompassing all nine ASTRI Mini-Array
telescopes at the Teide site. The simulation incorporates site-specific parameters, including
geographical coordinates, elevation, atmospheric conditions, and precise telescope posi-
tions. Observations were modeled at 20-degree zenith angles, with dedicated simulations
for both northward and southward pointing directions.

The energy coverage spans 0.1–330 TeV for gamma-rays and electrons, extending to
600 TeV for protons. While we employed a spectral index of −1.5—flatter than observed
spectra [9]—to ensure adequate statistics at high energies, our differential analysis method-
ology incorporates appropriate event weights to accurately reflect the physical energy
distributions of each particle species.

The simulation pipeline consists of two primary stages:

1. Atmospheric Shower Development: Using the Corsika software package 7.7550 [21],
we model the complete evolution of particle cascades through the atmosphere, gener-
ating detailed maps of the Cherenkov light distribution at ground level.

2. Telescope Response Simulation: The sim_telarray package [22] models the inter-
action between the Cherenkov photons and telescope systems, including optical
ray-tracing and detector response characteristics, producing realistic shower images
as captured by the telescope cameras.

2.2. Data Levels

The data format of the ASTRI project was originally defined in compliance with those
of the Cherenkov Telescope Array, adopting the FITS format [23]. Detailed information on
the levels of the ASTRI data processing can be found in [14]. ASTRI data levels of interest
for the work presented here are as follows:

• Data Level 1a (DL1a): Single-telescope calibrated event data. For each event, they
contain intensity and time tag uncleaned images to be processed for the evaluation of
morphological and time parameters; they are used as input in our tests;

• Data Level 2a (DL2a): Array-wise event parameter data. For each event, they contain
the morphological and time-based parameters for all the telescopes in the array trig-
gered by that event, plus its stereoscopic reconstruction parameters. At the moment, all
data level files are produced with standard procedure implemented inA-SciSoft, ex-
cept for the computation of the time parameters at DL2a, which is currently performed
with a working-code being implemented in the standard data reconstruction chain;

• Data Level 2b (DL2b): Array-wise fully reconstructed files. For each event, they
contain the final global reconstructed parameters, which define the probability to be a
gamma-ray event, and its reconstructed energy and arrival direction in the sky.

In this work, we considered two DL2b data samples: the first was achieved by reducing
data up to DL2b without any time-based parameters as training parameters in the Random
Forest method for gamma/hadron separation, while the second by including in the Random
Forest procedure, in addition to the standard ones, the time-based parameters described in
Section 4.

The DL2b files of the two data samples are then further processed, separately, using
appropriate tools of the ASTRI data reduction and scientific analysis software in order to
derive the global properties of the final dataset in terms of sensitivity, angular resolution,
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and energy resolution. In this way, we are able to assess the impact of the time parameters
in the final performance of the system.

2.3. Pixel Time Readout in the ASTRI Mini-Array Camera

IACTs are equipped with a trigger system, capable of reacting in a ns time scale to the
Cherenkov flash, activating the camera readout. The details on the camera pixel trigger
and readout system for the ASTRI Mini-Array telescopes can be found in Sottile et al. [24].
For the purpose of this paper, it is important to report that a topological trigger occurs
when a minimum number N of adjacent pixels reach a predefined charge threshold T (cor-
responding to a minimum number of photoelectrons due to Cherenkov photons recorded
simultaneously by each pixel). Both N and T are set for each observing run according to
the actual observing conditions, with N ≥ 4, and T ≳ 7 (as for the MC production used in
this study). The topological trigger signal is sent to the back-end electronics that enable the
camera trigger and, eventually, the readout of the entire camera.

Each pixel is then assigned a value between 0 and 255 that represents the time (in ns)
when the cumulative charge readout in the pixel exceeds the charge threshold T, with the
camera trigger set at time 128. The value 255 is assigned to pixels reading a signal below
the threshold T for the entire duration of the time register readout process (lasting 255 ns
and centered on the camera trigger time). The pixel time information is stored in the DL1a
files with the same array structure as the intensity image and can be processed and used as
an image as well.

3. Basic Settings for Gamma/Hadron Separation
We describe here how our tests were incorporated in the already existent analysis

software A-SciSoft, developed for the analysis of the data collected by ASTRI Mini-Array
and ASTRI-Horn.

In the benchmark configuration, A-SciSoft employs a Random Forest algorithm
applied to a set of morphological and stereoscopic parameters (see Section 3) to provide a
”gammaness” indicator for the gamma/hadron separation and to reconstruct the shower
energy and arrival direction. For our tests, we use the same tool, adding a set of several
time parameters to the morphological parameter set.

The feature importance scores generated by the Random Forest model guided our
selection of the most relevant parameters, further optimizing the performance of our
classification algorithm.

To optimize the classifier’s performance, we implemented a systematic data balanc-
ing strategy based on the shower size parameter log10(SIZE) (SIZE represents the total
photoelectron content in the cleaned image, as detailed in Section 3). We partitioned the
full dataset into 100 logarithmic SIZE bins and applied selective pruning to achieve equal
representation of gamma and hadron events within each bin.

Our initial dataset comprised the following:

• 136,498 gamma-ray events;
• 126,645 hadron events.

The pruning algorithm selectively removed:

• 14,204 gamma-ray events;
• 4351 hadron events.

This process yielded a perfectly balanced final dataset containing 122,294 events of
each type. This careful equilibration across the SIZE parameter space serves two crucial
purposes: it prevents classification bias that could arise from uneven event distributions,
and it ensures robust performance across the full range of shower intensities. Such balancing
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is particularly important for machine learning applications in gamma-ray astronomy,
where classification accuracy must be maintained across multiple orders of magnitude in
shower size.

Hyperparameter tuning was performed by means of a randomized search that imple-
ments a “fit” and a “score” method.

Our implementation employs a carefully optimized set of hyperparameters, selected
to balance computational efficiency with classification performance:

• Ensemble Size (n_estimators = 100): We deployed a forest of 100 decision trees, rep-
resenting an optimal compromise between model complexity and predictive power.
While larger ensembles were tested, we observed diminishing returns beyond this
size, with minimal performance gains from hundreds of trees and prohibitive compu-
tational costs from thousands.

• Feature Sampling (max_features = √n f eatures): At each decision node, the algorithm
considers a subset of features equal to the square root of the total feature count,
promoting diversity in the decision-making process.

• Tree Architecture:

– max_depth = 20: limits each tree’s maximum depth to prevent overfitting while
maintaining sufficient model complexity;

– min_samples_split = 2: Requires at least two samples to justify further node splitting;
– min_samples_leaf = 2: Ensures each terminal node contains at least two samples.

• Sampling Strategy (bootstrap = True): Implements bootstrap aggregating (bagging)
during tree construction, where each tree trains on a randomly sampled subset of the
data. This approach enhances model robustness and reduces overfitting by introducing
diversity in the training process.

This configuration achieves an effective balance between model complexity, compu-
tational efficiency, and classification performance across our gamma-hadron discrimina-
tion tasks.

Morphological and Stereoscopic Parameters

The analysis of Cherenkov radiation events captured by the ASTRI Mini-Array de-
mands a comprehensive parameterization framework that encapsulates both the spatial
and temporal characteristics of the atmospheric showers. Each event reconstruction relies
on multiple complementary parameters that collectively characterize the fundamental
properties of the primary particle interaction and subsequent shower development.

In our study, we have utilized the main morphological and stereoscopic parameters
commonly adopted in Cherenkov analysis [3] and already included in the standard analysis
procedure of A-SciSoft.

Our analysis framework incorporates the following key parameters to characterize
Cherenkov shower images:

• Shower Size Parameters:

– log10(SIZE): Logarithmic measure of the total photoelectron content in the
cleaned image;

– DENS: Compactness measure defined as log10(SIZE/(WIDTH × LENGTH));
– CONC: Image concentration, computed as the ratio between the two brightest

pixel intensities and total shower size.

• Shape Parameters:

– WIDTH: Minor axis of the best-fit shower ellipse [3];
– LENGTH: Major axis of the best-fit shower ellipse [3];
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– M3LONG: Third-order moment characterizing image elongation.

• Image Structure Metrics:

– LEAKAGE: Ratio of edge pixel signals to total shower size;
– NUMCORE: Count of shower core pixels [14];
– NUMBOUNDARY: Count of shower boundary pixels [14];
– NUMISLAND: Number of isolated pixel clusters (used for filtering).

• Stereoscopic Reconstruction Parameters:

– NUSEDTEL: Number of telescopes contributing to stereoscopic reconstruction;
– TELIP: Distance between reconstructed shower core and telescope position;
– STMAXH: Reconstructed height of shower maximum.

To carry out our tests, we have added to this set a different subset of the temporal
parameters described in Section 4.

4. Time Parameters
We describe here the implementation of the parameters we have derived from the

pixel time tags. The time parameters are evaluated after a standard cleaning procedure [14]:
we use only the time tags recorded for the pixels survived in the cleaned image. In the
following, tp is the time recorded in each pixel (TTP), ip is the charge intensity in each pixel,
and np is the total number of pixels in the cleaned image.

4.1. Standard Time Parameters

These are the two main time parameters present in the literature (see, e.g., the ones in
use for the analysis of the MAGIC telescopes data [7]).

Time RMS. It is a measure of the spread of the TTPs and it is totally independent of the
image morphology and position on the camera. For each cleaned image, we derive the
Root Mean Square of the pixel time tags as follows:

T_RMS =
√

∑(tp − tAVG)2 (1)

where tAVG is the average pixel time, evaluated as tAVG =
∑ tp
np

.

Time Gradient. It measures how fast the shower image evolves along the image major
axis. The image is reduced to one dimension by projecting the pixel coordinates onto the
major axis. The gradient is defined as the first order coefficient b of the quadratic function
t = ax2

p + bxp + c that best fits the arrival times versus the space coordinate along the major
axis (xp).

4.2. Parameters Based on the Time RMS

Normalized Time RMS. It provides a normalized measure of the temporal dispersion.
The RMS is evaluated as usual (see definition above), and then divided by the size of the
cleaned image (SIZE = ∑ ip) and the number of pixel (np):

T_RMSNORM =
T_RMS

SIZE ∗ np
(2)

Weighted Time RMS. This parameter would put in evidence any effect in the time
dispersion related to the pixel charge content. The average time is evaluated by
weighing each pixel time for the signal intensity recorded in the relevant pixel. Thus:
tAVGW = ∑ (tp × ip)/SIZE. In the evaluation of the RMS, a fourth root is used instead of a
square root in order to enhance the separation effect.
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T_RMS_W =4
√

∑(tp − tAVGW)2/n3
p (3)

Linearized Time RMS. It measures the dispersion of the pixel time tags with respect to the
line that describes the shower time evolution along the image

T_RMS_L =
√

∑(tp − bxp − c)2/n2
p (4)

where b and c are the same coefficients derived for the time gradient.

4.3. Parameters Based on the Time-Size or Time-Distance Dispersions

We have explored the Pixel Size-Time (ST space) and Pixel Distance-Time (DT space)
parameter spaces (where pixel size is the charge content ip of the single pixel and distance
is intended as between each pixel and the image baricenter) searching for features that
could be significant for the Gamma/Hadron discrimination. The latter space describes how
the shower image evolves in time (i.e., at which distance from the image centroid the pixels
light up first); the former tells if brighter pixels are faster to trigger. We can then apply to
these plots a morphological analysis using the same algorithm as for the Hillas parameters
(algorithms are described in [25]), to evaluate a width and a length for these dispersions.
The quantities considererd for further analysis are width and length in the ST space (both
in a simple form and normalized for the total SIZE of the image and the number of pixel
np: WID_ST, LEN_ST, WID_ST_NORM, and LEN_ST_NORM) and length in the DT space
(LEN_DT).

This concept can be expanded to 3-dimensional space. In particular, we have explored
the two spaces defined by X and Y coordinates of the pixel plus pixel time (XYT space),
and Pixel Size-Time-Pixel Distance (STD space) for each pixel, obtaining a width and a
length. Here, we have examined the length and the width in the STD space (LEN_SDT,
WID_SDT) and the length in the XYT space (LEN_XYT).

4.4. Other Parameters

Lacunarity. Lacunarity was initially conceived to characterize fractals (Mandelbrot [26],
Lin and Yang [27], Gefen, Meir, and Aharony [28]), as it reveals variations in their space-
filling structures, with lower lacunarity implying greater visual uniformity. In our case,
lacunarity is used to quantify heterogeneity in the timing of showers. We use the gliding
box method described in Allain and Cloitre [29]. We consider a gridded timeline, with each
cell corresponding to 1 ns. If any pixel has time tag tp, the cell corresponding to tp on the
timeline is assigned a 1, otherwise the cell is marked with a zero. A sliding box of size nM

(>4, it can be adjusted to optimize the result) is shifted over the timeline grid, and at each
step, the mass M of the box (i.e., the number of non-zero cells) is recorded. The frequency
distribution of M is converted into a probability distribution PM across the number of
gliding boxes, and the lacunarity is computed using the variance and mean of the number
of full cells per gliding box, as

T_LAC =
Var(PM)

Avg(PM)2 + 1 (5)

This results in values between 1 and ∞, with 1 indicating a uniform dispersion of full cells
at a given scale, and values different from 1 signifying non-uniformity in the distribution.
Our study considers three distinct types of lacunarity to accommodate the nature of our
data. First, we introduce binary lacunarity (T_LAC), where cells can only have values of
0 or 1. Furthermore, we explore stretched lacunarity (T_LAC_S), where values greater
than one are spread across multiple cells, reflecting a stretched representation. Finally, we
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employ weighted lacunarity (T_LAC_W), preserving cells with values greater than one in
their original form (i.e., assigning to each cell tp a value equal to the number of pixel with
time tag tp).
Temporal coherence. It is a measure of the monotonicity of the shower evolution in space
and time. Pixels are arranged in a time-ordered sequence (earliest to latest). For each
of them, we evaluate the spatial distance from the one with the earliest time. To this
distance (dp), we assign a negative sign if it is lower than the one evaluated for the previous
pixel, otherwise, dp is defined as positive. The parameter of interest is then defined as
T_COHER = ∑ dp, with the signs as defined above: higher values correspond to a more
ordered development of the image.

Figures 2 and 3 show the distribution of the most promising parameters in different
SIZE ranges.

Figure 2. Cont.
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Figure 2. Distribution of selected time parameters in the Gamma-ray (black curve) and proton (orange
curve) samples in different SIZE ranges.

0 10 

50 < SIZE < 10
u 

20 30 40 

LEN-5T 

50 

10
2

.5 < SIZE < 1 0
4 

60 0 20 40 60 80 100 120 140 0 

LEN-5T 

100 

SIZE < 105.5 

200 300 

LEN-5T 

400 500 

Figure 3. Cont.



Appl. Sci. 2025, 15, 3879 14 of 23

50 < SIZE < 10u 

-50 0 50 100 150 200 250 300 0 

T..C0HER 

102
.5 < SIZE < 1 0

4 

200 -400 

T..C0HER 

600 800 0 1000 

1a4 < SIZE < 105.5 

2000 

T..C0HER 

3000 -4000

Figure 3. Distribution of time parameters in the Gamma-ray (black curve) and proton (orange curve)
samples in different SIZE ranges.

5. Time Parameter Selection
In order to optimize the selection of the temporal parameters to be included in the

analysis, we have performed a correlation analysis that allows us to identify and exclude
redundant parameters. The correlation matrix presented in Figure 4 illustrates the rela-
tionships between various temporal parameters considered in our study. The correlations
range from −1 to 1, where 1 indicates a perfect positive correlation, −1 a perfect negative
correlation, and 0 no correlation.

The network graph in Figure 5 provides a visual representation of the correlations
among the temporal parameters, highlighting the strength and direction of the relationships.

Figure 4. Correlation matrix of the temporal parameters.
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Figure 5. Network graph of the temporal parameter correlations.

The matrix highlights several strong correlations among the parameters. For exam-
ple, T_LAC_W and T_LAC show a near perfect correlation (0.98), suggesting that these
parameters provide similar information about the temporal structure of Cherenkov show-
ers. Similarly, LEN_ST and LEN_ST_NORM also show a very high correlation (0.99),
indicating redundancy between these measures.

Our feature selection approach focused on systematic redundancy elimination while
preserving discriminatory power. When faced with highly correlated parameter pairs
(correlation coefficient > 0.90), we retained only one parameter from each strongly corre-
lated cluster. Our selection prioritized parameters with higher feature importance scores
in preliminary Random Forest models and those with lower computational complexity.
For example, between T_LAC_W and T_LAC, we selected T_LAC due to its marginally
higher importance ranking and simpler computational requirements.

The final set of eight time parameters was determined through an iterative process
that balanced four key criteria:

• Diversity in Information: The chosen parameters cover a broad range of temporal
characteristics, from dispersion distributions to time gradients and coherence, ensuring
comprehensive representation of shower temporal dynamics.

• Low Redundancy: Parameters with high correlations to others were excluded to
retain only unique and independent features that contribute distinctly to the model’s
predictive power.

• Feature Importance: Selected parameters exhibit significant importance scores that
justify their inclusion. As shown in the Random Forest feature importance plot
(Figure 6), LEN_DT and LEN_ST are among the top features, indicating their strong
predictive power in gamma/hadron separation.

• Practical Considerations: We preferred parameters that are easier to compute and
interpret, such as T_RMS and LEN_DT, over more complex three-dimensional param-
eters. This pragmatic approach ensures that the model remains efficient for real-time
data analysis.

While we considered dimensionality reduction techniques such as Principal Com-
ponent Analysis (PCA), we ultimately opted for direct parameter selection to maintain
physical interpretability of the features. This approach preserves the direct connection be-
tween each parameter and its underlying physical meaning, which is particularly valuable
for understanding the temporal evolution of gamma-ray versus hadron-induced showers.
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The application of these criteria resulted in the selection of eight parameters optimized
for Gamma/Hadron separation.

• T_RMS (Root Mean Square of pixel trigger times): This parameter provides infor-
mation on the dispersion of the arrival times of Cherenkov photons, which is useful
in distinguishing between the more regular photon-induced showers and the more
irregular hadron-induced showers.

• T_GRAD (gradient of arrival times): This measures the time gradient across the
camera, helping to identify the shower orientation and differentiate between gamma
and hadron events.

• T_COHER (coherence of the arrival times): This parameter assesses the temporal
coherence of the Cherenkov photons, with gamma-ray showers typically exhibiting
higher coherence compared to hadron-induced showers.

• T_RMS_W (weighted RMS of arrival times): This is a weighted version of T_RMS,
which accounts for the intensity of the signal, providing a refined measure of the
temporal spread.

• T_LAC (lacunarity of the arrival times sequence): This parameter captures the degree
of homogeneity in arrival times, with a sparser distribution that can be indicative of
hadron showers.

• LEN_ST (length of shower in time): This parameter measures the temporal extent of
the shower, helping to differentiate between the typically shorter gamma-ray showers
and the longer hadron-induced ones.

• LEN_DT (delta time length): This parameter represents the difference in time length
across different parts of the shower, providing insights into the temporal asymmetry
of the event.

• LEN_ST_NORM (normalized shower length in time): This is a normalized version
of LEN_ST, offering a dimensionless measure that aids in comparing showers of
different sizes and intensities.

Figures 7 and 8 compare the feature importance of different sets of parameters. Specif-
ically, Figure 7 shows the case where only morphological and stereoscopic parameters
are used, without any temporal parameters, achieving a quality factor (QF) of 3.32. The
quality factor is defined as QF =

ϵγ√
1−ϵh

, where ϵγ and ϵh are, respectively, the number of
correctly identified gamma events and the number of correctly identified hadron events.
Figures 6 and 8 then compare the importance when using all temporal parameters versus a
selected subset. The QF increases from 3.65 when using all temporal parameters to 3.68
when using only the selected parameters. This improvement indicates that the selected pa-
rameters not only reduce computational complexity, but also enhance model performance.

The correlation matrix (Figure 4), network graph (Figure 5) and feature importance
plots (Figures 7 and 8) included in this paper visually support the selection rationale and
underscore the efficacy of these parameters in our machine learning models. The integra-
tion of these features is anticipated to significantly enhance the discrimination between
gamma-ray and hadron showers, contributing to the overall performance of the IACT
system. The integration of these temporal parameters into the rejection algorithm sig-
nificantly improves its performance, as evidenced by the increased Quality Factor (QF)
from 3.32 to 3.68, representing an increase of approximately 10.8%. This enhancement
underscores the value of these parameters in effectively distinguishing between gamma
and hadron events, thereby optimizing the analysis performance.
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Figure 6. Feature importance of morphological, stereo, and all temporal parameters using random for-
est (blue for morphological and stereo parameters, light blue for temporal parameters).

Figure 7. Feature importance of morphological and stereo parameters without any temporal parame-
ters using random forest.
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Figure 8. Feature importance of morphological, stereo, and selected temporal parameters using
random forest (blue for morphological and stereo parameters, light blue for temporal parameters).

6. High-Level Performance
In order to provide a final high-level assessment of the performance of the temporal

parameters investigated in this work, we derived the main performance metrics using the
standard routine implemented in the ASTRI pipeline [9]. We evaluated the efficiency of
the Gamma/Hadron discrimination algorithm implemented in A-SciSoft both with the
standard set of parameters and with the inclusion of temporal parameters, and compared
the two resulting datasets in terms of differential flux sensitivity (for an exposure time of
50 h), energy resolution, and angular resolution. A detailed study on the impact of temporal
parameters in the energy reconstruction procedure will be addressed in a future work.

We incorporated temporal parameter analysis into the DL2a processing pipeline, using
the complete Monte Carlo dataset outlined in Section 2. The analysis spans an energy range
from 10−0.5 TeV (≃0.3 TeV) to 102.5 TeV (≃300 TeV). To ensure realistic representation of
actual source observations, we implemented an energy-dependent event weighting scheme
for both background (proton) and gamma-ray events in the Level 2b (DL2b) samples. The
weighting procedure follows the methodology established in [30]. For gamma-ray events,
we applied weights derived from the well-established Crab Nebula spectrum measured by
the HEGRA Collaboration [31], which serves as a standard reference source in very high-
energy gamma-ray astronomy. This approach ensures that our analysis reflects realistic
spectral distributions encountered in observational data.

For completeness in our high-level analysis, we included the electron-induced back-
ground events, although their contribution to the irreducible gamma-like background is
minimal at the ASTRI Mini-Array’s primary operational energies (E > ∼1 TeV). At these
energies, proton-initiated showers overwhelmingly dominate the background component.

Our analysis protocol implements a multi-parameter selection framework applied to
the Level 2b (DL2b) samples, incorporating three primary criteria:

• Background rejection efficiency (“gammaness”);
• Shower arrival direction reconstruction;
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• Event multiplicity thresholds.

These selection criteria were optimized independently within each energy bin to
maximize sensitivity for a 50 h exposure time. For event acceptance, we required a detection
significance of 5σ (calculated according to Equation (17) in [32]) within each energy bin,
maintaining consistent exposure parameters with the optimization phase.

The analysis methodology employs an on-source/off-source approach, with an off-
source to on-source exposure ratio of 5. This approach is fundamental to Cherenkov
telescope data analysis: gamma-ray signals in the “on-source” region must be evaluated
against “off-source” background control regions. For point-source observations, the data
acquisition strategy enables the definition of multiple background control regions (typ-
ically 5) with identical acceptance characteristics to the signal region, ensuring reliable
background estimation. Additional quality criteria included the following:

• Minimum signal excess threshold of 10 events;
• Signal-to-systematic uncertainty ratio exceeding 5:1 (assuming 1% systematic uncer-

tainty in background estimation).

These selection criteria align with established IACT community standards [30], en-
abling performance evaluation under well-defined and reproducible analysis conditions.

Figure 9 shows the on-axis point-like source differential sensitivity (in 50 h) achieved
with the use of a standard set of morphological and stereoscopic parameters for gamma/
hadron separation computation (blue points) and with the additional use of the temporal
parameters investigated in this work (orange points). The ratios between the results of the
two methods are also shown.

As apparent in Figures 9–11, the inclusion of the temporal parameters in the
gamma/hadron rejection algorithm causes a significant improvement (up to ∼50%) of the
array sensitivity in the energy range below ∼1.5 TeV, while above that energy, the two
analyses provide basically the same results.

On the other hand, there is no comparable improvement, but no deterioration either,
in energy or angular resolution. This was somewhat expected as for the energy and arrival
direction reconstruction we used for any high-level analysis the standard reconstruction
procedure implemented in A-SciSoft, which does not use any time parameters related
information [14].
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Figure 9. (left) On-axis differential sensitivity (in 50 h) achieved with the inclusion of the temporal
parameters, apart from the standard morphological and stereoscopic ones, in the gamma/hadron
separation procedure (orange points) against the benchmark method (i.e., with the use of standard
morphological and stereoscopic parameters only, blue points) For the solid grey line [33]. (right) Ratio
between the on-axis differential sensitivities achieved from the two different analyses. Higher values
correspond to better performance.
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Figure 10. (left) On-axis angular resolution achieved with the inclusion of the temporal parameters,
apart from the standard morphological and stereoscopic ones, in the gamma/hadron separation
procedure (orange points) against the benchmark method (i.e., with the use of standard morphological
and stereoscopic parameters only, blue points). (right) Ratio between the on-axis angular resolutions
achieved from the two different analyses. Lower values correspond to better performance.
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Figure 11. (left) On-axis energy resolution achieved with the inclusion of the temporal parameters,
apart from the standard morphological and stereoscopic ones, in the gamma/hadron separation
procedure (orange points) against the benchmark method (i.e., with the use of standard morphological
and stereoscopic parameters only, blue points). (right) Ratio between the on-axis energy resolutions
achieved from the two different analyses. Lower values correspond to better performance.

7. Discussion and Conclusions
This study presents a comprehensive analysis of the integration of temporal parame-

ters into the gamma/hadron separation algorithm used in the context of the ASTRI Mini-
Array Imaging Atmospheric Cherenkov Telescopes (IACTs). Our primary objective was to
enhance the discrimination capabilities between gamma-ray and hadron-induced showers
by selecting a subset of temporal parameters that provide unique and complementary
information about the temporal dynamics of the Cherenkov showers.

The correlation analysis revealed significant relationships among various temporal
parameters, allowing us to identify and exclude redundant features. By carefully select-
ing eight key parameters—T_RMS, T_GRAD, T_COHER, T_RMS_W, T_LAC, LEN_ST,
LEN_DT, and LEN_ST_NORM—we were able to capture diverse aspects of the shower
characteristics, ultimately improving the model’s performance.

The introduction of these temporal parameters into the Random Forest (RF) model
resulted in a notable enhancement of the gamma/hadron separation, as evidenced by
the increase in the Quality Factor (QF) from 3.32 to 3.68, representing an improvement
of approximately 10.8% compared to the current procedure implemented in A-SciSoft
and used as a benchmark. This improvement underscores the effectiveness of the selected
parameters in refining the discrimination process.

Although the improvement is concentrated only at the lowest energies, the result is
to be considered promising in every way for observations for which the lowest energies
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are particularly important, such as observations of transients and, in general, of extragalac-
tic objects.

The more pronounced impact of temporal parameters at lower energies (below
∼1.5 TeV) can be attributed to several key factors. At these energies, the Cherenkov
showers tend to be less developed and have lower photon densities, making the mor-
phological differences between gamma and hadron events more subtle. The temporal
evolution of the shower becomes particularly important in this regime as it provides
complementary information that the standard morphological parameters alone cannot
effectively capture. Additionally, at lower energies, the shorter duration and more coherent
development of gamma-ray induced showers stands in greater contrast to the more chaotic
temporal structure of hadron showers. This temporal distinction becomes less pronounced
at higher energies, where both shower types produce stronger signals with more defined
morphological characteristics, making the traditional spatial parameters alone sufficient for
effective discrimination.

In addition, it is worth noting that the impact of temporal parameters in gamma/hadron
separation is expected to be much more efficient in the case of observations performed by a
single telescope, since in this case the stereoscopic parameters are not accessible. The study
of this use case, which is particularly important in view of the first ASTRI Mini-Array
telescope observations (already ongoing), may be considered in future work.

Future work could focus on further refining these parameters and exploring their
potential interactions with other features to uncover additional performance gains. It
is worth noting that in this study, the temporal parameters were tested only with the
Random Forest model. However, our future work aims to investigate the application of
more advanced ensemble learning models, such as those presented in [4], to the temporal
parameters. This will allow us to explore the potential benefits of combining advanced ma-
chine learning techniques with the temporal parameters, building on the promising results
already obtained with morphological and stereo parameters. In addition to exploring more
advanced ensemble learning models, we plan to investigate deep learning approaches for
gamma/hadron discrimination using temporal parameters. While Random Forests provide
interpretable results and good performance with manageable computational costs, deep
neural networks—particularly convolutional or recurrent architectures—might capture
more complex temporal patterns in the shower development. Such networks could poten-
tially extract hierarchical features directly from the raw time and intensity data without
requiring manual feature engineering. However, this would need to be balanced against the
increased computational demands and reduced interpretability inherent to deep learning
models. A comparative study between our Random Forest approach and various deep
learning architectures would provide valuable insights for the IACT community.
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