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Abstract

Financial fraud represents a critical global challenge with substantial economic and social
consequences. This comprehensive review synthesizes the current knowledge on machine
learning approaches for financial fraud detection, examining their effectiveness across
diverse fraud scenarios. We analyze various fraud types, including credit card fraud,
financial statement fraud, insurance fraud, and money laundering, along with their specific
detection challenges. The review outlines supervised, unsupervised, and hybrid learning
approaches, discussing their applications and performance in different fraud detection
contexts. We examine commonly used datasets in fraud detection research and evaluate
performance metrics for assessing these systems. The review is further grounded by
two case studies applying supervised models to real-world banking data, illustrating the
practical challenges of implementing fraud detection systems in operational environments.
Through our analysis of the recent literature, we identify persistent challenges, including
data imbalance, concept drift, and privacy concerns, while highlighting the emerging
trends in deep learning and ensemble methods. This review provides valuable insights
for researchers, financial institutions, and practitioners working to develop more effective,
adaptive, and interpretable fraud detection systems capable of operating within real-world
financial environments.

Keywords: machine learning; deep learning; fraud detection; data-driven finance

1. Introduction
Financial fraud represents one of the most pressing challenges facing modern business

sectors, with severe impacts extending beyond individual organizations to affect the entire
global economy. Recent comprehensive surveys reveal that 56% of companies worldwide
have experienced some form of fraud, with financial fraud being particularly prevalent and
economically damaging [1]. The sophistication and scale of fraudulent activities continue to
evolve, rendering traditional detection approaches increasingly inadequate for addressing
contemporary threats [2].

The emergence of machine learning (ML) as a powerful analytical tool has revolution-
ized fraud detection capabilities, enabling organizations to identify complex patterns and
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anomalies in vast financial datasets that might indicate fraudulent activities. The strate-
gic application of appropriate ML techniques is crucial for identifying emerging threats
while simultaneously minimizing false fraud alarms that can disrupt legitimate business
operations [3].

Despite these technological advances, significant challenges persist in developing
robust fraud detection systems. These challenges are not merely technical but are deeply
rooted in the nature of financial data and the adversarial dynamics of fraud. The key
obstacles include extreme class imbalance, where fraudulent transactions are needles
in a haystack (often less than 1% of the total), making it difficult for models to learn
their characteristics [4–6]. Furthermore, models face constant concept drift as fraudsters
continuously evolve their tactics, rendering models trained on historical data obsolete [7].
Finally, the increasing complexity of models, especially deep learning approaches, raises
critical issues of interpretability, which is often a strict requirement in highly regulated
financial environments [8,9]. These multifaceted challenges significantly complicate the
accurate and timely detection of evolving financial fraud schemes.

This comprehensive review aims to provide a systematic analysis of ML techniques for
financial fraud detection, addressing the current state of research and practical applications.
However, unlike many surveys that remain at a theoretical level, this work aims to bridge
the gap between academic research and operational reality. Unlike other reviews, this work
bridges the gap between theory and practice through two in-depth case studies on real and
proprietary banking data, critically analyzing the operational trade-offs and performance
in realistic scenarios. We examine different categories of financial fraud, analyze various
ML approaches, explore commonly used datasets, and evaluate performance metrics
that are critical for assessing system effectiveness. By synthesizing the recent advances
and identifying research gaps, this review provides valuable insights for researchers and
practitioners seeking to develop more effective and practical fraud detection systems.

2. Types of Financial Fraud
Financial fraud encompasses a diverse array of deceptive activities designed to achieve

illegal financial gain through various mechanisms. A thorough understanding of different
fraud types and their characteristics is fundamental for developing targeted and effective
detection systems. Based on our comprehensive analysis of the literature, we present
a systematic classification of financial fraud into two primary categories: external and
internal fraud.

2.1. External Fraud

External fraud represents deceptive activities perpetrated by stakeholders operating
outside an organization’s direct control. Our literature analysis reveals that 54% of the
examined articles focus on investigating various forms of external fraud.

2.1.1. Credit Card and Payment Fraud

Credit card fraud emerges as the most extensively researched type of external fraud in
the literature [4,10,11]. Globally, losses from this type of fraud are projected to exceed USD
40 billion annually by 2027. This category involves unauthorized transactions conducted
using stolen card information or through sophisticated deceptive mechanisms. Research in
this domain typically analyzes transaction patterns, purchase behaviors, temporal aspects
of card usage, and geographic anomalies to identify indicators of potential fraud [12].

The scope of payment fraud has expanded significantly with digital transformation,
now encompassing online payment fraud, digital wallet transactions, contactless payments,
and point-of-sale fraud. The increasing adoption of diverse digital payment systems has
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attracted substantial research attention, reflecting the growing complexity of payment fraud
schemes [13–15].

2.1.2. Loan Fraud

Loan fraud involves sophisticated deceptive practices throughout the loan lifecycle,
including fraudulent loan applications, identity theft schemes, income misrepresentation,
and property value inflation [16–18]. ML models designed for loan fraud detection typically
analyze applicant data patterns, credit history inconsistencies, application timing anomalies,
and cross-referencing patterns to identify potential fraud indicators.

2.1.3. Insurance Fraud

Insurance fraud represents a significant category encompassing various schemes
across different insurance sectors. The FBI estimates that the total cost of insurance fraud
(non-health insurance) is more than USD 40 billion per year in the United States alone.
This includes fraudulent claims in health insurance programs involving document forgery,
fraudulent billing practices, and false medical prescriptions [19,20]. Additionally, automo-
bile insurance fraud involving sophisticated collusion networks between policyholders
and repair shops presents unique detection challenges [21–23]. ML techniques in this
domain analyze claim patterns, policyholder behavioral histories, service provider network
relationships, and temporal claim sequences to detect potential fraudulent activities.

2.2. Internal Fraud

Internal fraud consists of deceptive activities perpetrated by individuals with autho-
rized access within an organization. Approximately 46% of the analyzed studies focus on
various forms of internal fraud.

2.2.1. Financial Statement Fraud

Financial statement fraud involves sophisticated manipulation of financial reports
to misrepresent an organization’s true financial performance and position [24–26]. This
category is typically studied using comprehensive data from financial regulatory bodies
such as the SEC, major stock exchanges, and auditing firms [27]. ML techniques in this
domain analyze financial ratios, reporting pattern anomalies, textual elements of financial
statements, and cross-period consistency to identify potential fraud indicators.

2.2.2. Money Laundering

Money laundering fraud involves complex schemes designed to disguise the ori-
gin of illegally obtained funds by integrating them into legitimate financial transaction
flows [28,29]. According to the United Nations, the estimated amount of money laun-
dered globally in one year is 2–5% of the global GDP, or USD 800 billion–USD 2 trillion in
current US dollars. ML models for money laundering detection analyze suspicious pat-
terns in transaction networks, customer behavioral anomalies, account activity sequences,
and cross-institutional transaction flows that may indicate laundering activities [30].

2.2.3. Tax Fraud

Tax fraud encompasses deliberate misrepresentation of information to tax authorities
with the intent to reduce tax liability through various schemes [31,32]. ML techniques in
this domain analyze tax return data inconsistencies, business activity patterns, taxpayer
network relationships, and cross-referencing with external data sources to identify potential
evasion patterns [33].
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2.2.4. Asset Misappropriation

This category includes various forms of unauthorized asset manipulation, including
unauthorized payment schemes [34,35], dormant account fraud exploitation, smurf fraud
techniques, and bulk fraud operations [36]. ML approaches for detecting asset misappro-
priation analyze transaction patterns, user access logs, timing anomalies, and authorization
sequences to detect unusual activities that may indicate misappropriation.

Understanding the specific characteristics and indicators of each fraud type is essential
for developing targeted ML approaches that address the unique patterns and challenges
associated with different fraud categories. The diversity of fraud types necessitates varied
and sophisticated approaches to detection as different fraud schemes exhibit distinct behav-
ioral patterns, temporal characteristics, and network relationships that require specialized
analytical techniques.

2.3. Emerging and Complex Fraud Typologies

In addition to these well-established categories, recent developments have intro-
duced new and complex fraud typologies that warrant dedicated attention [37,38].
These include the following:

• Money Muling: Individuals are recruited—knowingly or unknowingly—to transfer
illicit funds across accounts, masking their criminal origin. These schemes often in-
volve SEPA transfers, instant payments, and prepaid card top-ups, and are associated
with device or SIM changes and recurring beneficiary patterns.

• Account Takeover (ATO): Unauthorized access to user accounts via stolen cre-
dentials or social engineering, enabling fraudulent transactions under the guise of
legitimate users.

• Authorized Push Payment (APP) Fraud: Victims are deceived into initiating payments
to fraudsters, typically through impersonation or urgency-based manipulation.

• Synthetic Identity Fraud: Fraudsters construct fictitious identities by combining
real and fabricated personal data, allowing them to open accounts and obtain
credit undetected.

• Social Engineering and Impersonation: Psychological manipulation techniques
are used to extract sensitive information or induce financial actions, often targeting
customer support or vulnerable individuals.

• Business Email Compromise (BEC): Fraudsters hijack or spoof corporate email accounts
to redirect payments or obtain confidential data through deceptive communications.

These emerging fraud types often blur the boundaries between internal and external
threats and require adaptive detection strategies that incorporate behavioral analytics,
cross-channel monitoring, and real-time anomaly detection.

3. Review Methodology
This review is based on a systematic literature search designed to identify relevant

and impactful research at the intersection of machine learning and financial fraud detection.
The process was guided by a defined protocol to ensure comprehensive coverage and
minimize bias. Our analysis synthesizes the findings from over 120 peer-reviewed articles,
conference proceedings, and technical reports published in the last decade, specifically
from January 2014 to December 2023, to capture the most current trends and challenges in
the field.

The literature search was conducted across several major academic databases, includ-
ing Scopus, IEEE Xplore, ACM Digital Library, and Web of Science. Search queries were
formulated by combining keywords from three core areas:
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• Fraud Typologies: “financial fraud", “credit card fraud”, “insurance fraud”, “money
laundering”, “payment fraud”, and “financial statement fraud”.

• Learning Paradigms: “machine learning”, “deep learning”, “supervised learning”,
“unsupervised learning”, “anomaly detection”, and “ensemble methods”.

• Specific Algorithms: “Random Forest”, “Support Vector Machine”, “neural network”,
“LSTM”, “autoencoder”, and “XGBoost”.

Our inclusion criteria required articles to (i) apply one or more ML techniques to a
financial fraud detection task, (ii) present empirical results with performance evaluation,
and (iii) be published in English. We excluded studies that were purely theoretical, lacked
sufficient methodological detail for replication, or focused on non-financial domains (e.g.,
click fraud and academic plagiarism). The selection involved an initial screening of titles
and abstracts, followed by a full-text review to determine final eligibility for inclusion in
this synthesis.

4. Machine Learning Approaches for Fraud Detection
Machine learning approaches for fraud detection can be systematically categorized

into three primary methodologies: supervised, unsupervised, and hybrid methods. Each
approach offers distinct advantages and limitations depending on the specific fraud detec-
tion scenario and available data characteristics.

4.1. Supervised Learning

Supervised learning represents the predominant approach in fraud detection research,
accounting for approximately 57% of the techniques employed in the reviewed literature.
In this methodology, models are trained on carefully labeled datasets where transactions
are explicitly classified as either fraudulent or legitimate, enabling the algorithm to learn
discriminative patterns.

4.1.1. Classification Techniques
Random Forest (RF)

Random Forest emerges as the most widely adopted supervised technique for fraud
detection, appearing in 34 studies within our review. This ensemble method combines mul-
tiple decision trees to improve classification accuracy while effectively reducing overfitting
tendencies [39,40]. RF models have demonstrated consistently high accuracy rates in credit
card fraud detection and financial statement fraud identification, frequently achieving
accuracy rates exceeding 95% [41].

RF overcomes the fundamental limitations of individual decision trees, where splits
occur considering the entire dataset, making DT algorithms prone to overfitting and high
variance. Instead, RF considers random subsets of data to build multiple decision trees,
and, for each tree, a random subset of features is selected from all available features.
Furthermore, it employs optimization criteria for finding the best split for each node using
Gini index or entropy for classification tasks, or RSS for regression problems.

Extra Trees

Extra Trees (Extremely Randomized Trees) represent a computationally efficient vari-
ant of Random Forest [42,43]. This algorithm is particularly well-suited for applications
with noisy data or a large number of features.

While similar to Random Forest in using an ensemble of decision trees, Extra Trees
introduces a greater degree of randomness in how splits are chosen. Specifically, for each
node, a random subset of features is considered, and the split point for each feature
is selected randomly rather than being optimized based on criteria like Gini impurity or
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entropy. This randomized approach reduces variance and computational cost, often leading
to robust performance, although it may sometimes result in a slight increase in bias.

Logistic Regression (LR)

Logistic Regression appears in 32 studies and is particularly valued for its simplicity
and interpretability characteristics. It models the probability of a transaction being fraudu-
lent based on its feature characteristics [44,45]. LR demonstrates particular effectiveness
for binary classification tasks common in fraud detection, although it may struggle with
highly complex and non-linear fraud patterns [46].

Support Vector Machine (SVM)

Support Vector Machine is utilized in 29 studies, separating data points using a hyper-
plane that maximizes the margin between different classes [47,48]. SVM proves effective
for both linear and non-linear classification through various kernel functions, making it
suitable for diverse fraud detection scenarios with different data characteristics [49].

In practice, SVM is a linear model used in two primary scenarios: when data are
linearly separable (classes are well separated) and when data are not linearly separable
(no sharp separation exists in the original space). In the first case, we can identify a line
(one-dimensional problem) or hyperplane (multi-dimensional problem) that effectively
separates the classes. This separating hyperplane is called the decision boundary.

While multiple separators may perfectly discriminate between classes, the choice
of separator significantly impacts how new data points are classified. We compute the
perpendicular distance from each training observation to a given separating hyperplane;
the smallest distance from observations to the hyperplane is known as the margin. The de-
cision boundary should be positioned as far as possible from data points of both classes.
Training points that touch the margin are support vectors, which “support” the maximal
margin hyperplane.

For non-linearly separable data, SVM employs the kernel trick, transforming data
into higher-dimensional space where linear separation becomes possible. The kernel
function implicitly maps data to high-dimensional space, allowing for non-linear decision
boundaries in the original space.

Decision Trees (DTs)

Decision trees are employed in 29 studies, creating models that predict target variable
classes by learning decision rules from data features [50,51]. DTs are particularly valued for
their interpretability, which is crucial in fraud detection, where explaining why a transaction
was flagged as fraudulent may be legally or operationally necessary [52].

Decision trees utilize tree-like structures to deliver consequences based on input
decisions. They are particularly important for anomaly and fraud detection in industries
like finance and banking, where companies deploy decision trees to filter out anomalous
or fraudulent loan applications and identify fraudulent customers. The recursive binary
tree structure provides excellent interpretability, with the feature space fully described by a
single tree.

The goal is to find trees that minimize the Residual Sum of Squares (RSS), a general
characteristic of DTs except for Extra Trees. Unfortunately, finding the best binary partition
in terms of minimum sum of squares is not feasible in practice because it is computationally
infeasible to consider every possible partition of the feature space. For this reason, we
employ a top-down greedy approach known as recursive binary splitting.



Appl. Sci. 2025, 15, 11787 7 of 32

Naive Bayes (NB)

Naive Bayes appears in 19 studies, applying Bayes’ theorem with an independence
assumption between features [53,54]. While this independence assumption rarely holds
in real-world financial data, NB often performs surprisingly well in fraud detection tasks,
particularly when dealing with limited training data [44].

This probabilistic classifier represents one of the fastest, most accurate, and reliable
supervised learning algorithms. It assumes features are normally distributed and indepen-
dent of each other. The algorithm uses prior probability P(H) of hypothesis H being true
and posterior probability P(H|D) of data D given that hypothesis H is true.

K-Nearest Neighbor (KNN)

K-Nearest Neighbor is used in 14 studies, representing an instance-based learning
algorithm that classifies transactions based on their proximity to known samples in the
feature space [55,56]. KNN proves effective for detecting fraud patterns that cluster in
feature space but may struggle with high-dimensional data [57].

KNN is a non-parametric supervised approach used for both classification and regres-
sion problems. The algorithm works by finding the k most similar objects to a given object
x based on distance or similarity measures between x and all objects in the dataset. It then
assigns a label to x based on the most frequent label among its k neighbors using either
majority voting or weighted voting approaches.

Artificial Neural Networks (ANNs)

Artificial neural networks are employed in 17 studies, capable of modeling complex
non-linear relationships between features and fraud likelihood [58,59]. While effective,
traditional ANNs may require significant computational resources and careful hyperpa-
rameter tuning [60].

Neural networks are information processing models inspired by biological neuron
systems, composed of highly interconnected processing elements known as “neurons.”
These networks are adaptive systems that can change their internal structure by adjusting
input weights. Each input variable is multiplied by respective weights, then summed
together to form net output, with bias added.

The ANN creates three layers in the neural network: input layer, hidden layer, and out-
put layer. The first layer receives raw input, processes it, and passes processed information
to hidden layers, which pass information to the output layer that produces the final out-
put. The advantage of neural networks is their adaptive nature, learning from provided
information to optimize weights for better prediction in unknown outcome situations.

XGBoost

XGBoost appears in 13 studies, representing a gradient boosting framework known for
exceptional performance and computational speed [61,62]. It sequentially builds decision
trees, with each tree correcting errors made by previous trees, making it particularly
effective for imbalanced datasets common in fraud detection [63].

Boosting (XGBoost) is an ensemble technique creating a collection of predictors where
learners are learned sequentially. Early learners fit simple models to data, then analyze
data for errors. The goal is to solve errors from prior trees at every step. Models can have
different importance or weights, and datasets are weighted so that observations incorrectly
classified by previous classifiers receive greater importance in subsequent model training.
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4.2. Unsupervised Learning

Unsupervised learning techniques are employed in approximately 18% of the reviewed
studies. These methods identify patterns and anomalies without requiring labeled training
data, making them particularly valuable for detecting novel fraud patterns that may not be
represented in historical labeled datasets.

4.2.1. Isolation Forest

Isolation Forest appears in 19 studies, isolating observations by randomly selecting
features and randomly selecting split values between maximum and minimum values
of selected features [64,65]. It proves particularly effective for identifying outliers, which
frequently represent fraudulent transactions [66].

4.2.2. Autoencoders

Autoencoders are used in 10 studies, representing neural networks that learn
to compress and reconstruct data, with reconstruction error serving as an anomaly
score [14,67]. They are particularly effective for dimensionality reduction and capturing
complex patterns in transaction data [68].

Autoencoders are latent variable models that discover latent variables (variables not
directly observed but inferred from direct observations). They consist of an encoder that
learns mapping from data X to low-dimensional latent space Z and a decoder that performs
the reverse operation, increasing dimensions from latent space Z back to original dimensions.

The process represents a form of compression, keeping the core information in data.
The encoder learns mapping from data X to low-dimensional latent space Z, while the
decoder learns to use latent features Z to reconstruct the original data. Using the distance
between reconstructed data and real data, we can determine if a signal represents an
anomaly or normal behavior.

4.2.3. K-Means Clustering

K-means appears in 7 studies, partitioning data into k clusters with each observation
belonging to the cluster with the nearest mean [69,70]. It can identify groups of simi-
lar transactions, with those falling outside established clusters potentially representing
fraudulent activities [23].

The K-means algorithm divides N samples into K disjoint clusters of equal variances,
minimizing within-cluster sum-of-squares (WSS) while maximizing between-cluster sum
of squares (BSS). Each cluster is represented by the mean of contained observations.

4.2.4. Hidden Markov Models (HMMs)

HMMs are employed in 7 studies, representing statistical models that assume the
system being modeled follows a Markov process with unobserved states [71,72]. HMMs
are particularly useful for modeling sequential data like transaction sequences, where they
can learn normal spending behaviors and flag significant deviations [73].

4.2.5. Local Outlier Factor (LOF)

LOF appears in 13 studies, comparing the local density of a point with local densities
of its neighbors, identifying samples with substantially lower density than neighbors as
potential outliers [65,74].

4.3. Deep Learning Approaches

Deep learning approaches constitute a rapidly growing segment of fraud detection
research, with approximately 34 studies employing these sophisticated techniques either
independently or in combination with traditional ML methods.
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4.3.1. Long Short-Term Memory (LSTM)

LSTM networks are used in 8 studies, representing specialized recurrent neural net-
works designed to model temporal sequences and long-range dependencies [75,76]. They
prove particularly effective for analyzing sequential transaction data, capturing temporal
patterns that may indicate fraudulent behavior [77].

LSTMs are special kinds of recurrent neural networks capable of learning long-term
dependencies in data through internal mechanisms called gates that regulate information
flow. These gates can learn which data in a sequence is important to keep or forget, allowing
LSTM models to store information for extended periods.

4.3.2. Convolutional Neural Networks (CNNs)

CNNs appear in 7 studies. Originally designed for image processing, CNNs can be
effectively applied to structured data for fraud detection [58,78]. The core idea is to treat
structured financial data as a grid, similar to an image, and apply convolutional filters
(kernels) to it. They automatically learn hierarchical features from data, where initial
layers capture simple patterns and deeper layers combine them to identify more complex
relationships, which is valuable for identifying sophisticated fraud patterns [79].

Using conv2d implementation, the most popular function for building convolutional
layers requires setting input channels, output channels, kernel size, stride, padding, and di-
lation parameters. The kernel is the filter that slides over the data, the stride defines the
step size of this movement, and padding adds a border to control the output dimensions.
The general formula to calculate the output size of a convolution is

Output Size =

⌊
Input Size + 2 × Padding − Kernel Size

Stride

⌋
+ 1 (1)

where

• Input Size: The dimensions (height and width) of the input data.
• Kernel Size: The dimensions of the filter used to scan the data.
• Padding: A border of zeros added to the input, primarily to control the output’s

spatial dimensions.
• Stride: The step size, or how many pixels the filter moves at a time across the input.

In this formula, the input size is adjusted by adding twice the padding (to account for
both sides) and subtracting the kernel size. This result is then divided by the Stride (the step
size of the filter). The floor function ⌊·⌋ ensures the output dimension is an integer, and one
is added to finalize the count of possible kernel positions. This determines the spatial
dimensions of the feature map produced by the layer. This process allows the network to
build a rich multi-level representation of the input data to effectively classify transactions.

4.3.3. Recurrent Neural Networks (RNNs)

RNNs are employed in 7 studies, representing networks that maintain memory of
previous inputs, making them suitable for sequential data analysis [80,81]. They can model
temporal dependencies in transaction sequences, helping to identify unusual patterns [82].

RNNs are dynamic networks that account for temporal aspects, exhibiting cyclic
behavior that allows forward and backward processing to reconstruct temporal se-
quences. They are particularly well-suited for sentiment analysis and other sequential data
processing tasks.

4.3.4. Generative Adversarial Networks (GANs)

GANs appear in 7 studies, consisting of generator and discriminator networks that
compete against each other [83,84]. In fraud detection, GANs can generate synthetic
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fraud samples to improve classifier training, particularly valuable for highly imbalanced
datasets [5].

While promising for data augmentation, GANs face challenges such as training in-
stability and “mode collapse,” where the generator produces a limited variety of samples.
Furthermore, evaluating the quality of synthetic data remains an open research question,
making their practical deployment complex.

GANs utilize two competing neural networks: a generator (G) that creates samples
from random noise and a discriminator (D) that distinguishes between real and fake
samples. The generator is trained indirectly through its ability to “fool” the discriminator.

Deep Convolutional Generative Adversarial Networks (DCGANs) extend GANs using
convolutional architectures for improved image generation and feature extraction capabilities.

4.4. Hybrid and Ensemble Methods

Many studies employ hybrid approaches that strategically combine multiple ML
techniques to improve overall detection performance and robustness.

4.4.1. Supervised-Unsupervised Hybrids

Approximately 15% of studies combine supervised and unsupervised techniques,
such as using unsupervised learning for feature extraction followed by supervised
classification [85,86].

4.4.2. Ensemble Methods

Techniques including bagging (5 studies), boosting (59 studies), and stacking (4 stud-
ies) combine multiple models to improve prediction accuracy [87–89]. These approaches
can effectively mitigate individual model weaknesses and improve overall detection
performance [52].

4.4.3. Deep Learning Hybrids

Some studies combine traditional ML with deep learning approaches, such as using
deep learning for feature extraction and traditional ML for final classification [4,90].

The prevalence of supervised learning in fraud detection research reflects the availabil-
ity of labeled historical data in many financial institutions. However, the growing interest
in unsupervised and deep learning approaches indicates recognition of their potential to
identify novel and evolving fraud patterns that may not be well-represented in historical
training data.

To provide a clear comparative overview of the most common techniques discussed in
the literature, Table 1 summarizes their key characteristics, advantages, and disadvantages
in the context of financial fraud detection. This synthesis highlights the critical trade-
offs between model performance, complexity, and interpretability that practitioners and
researchers must navigate.

Table 1. Comparative analysis of machine learning approaches in fraud detection.

Algorithm Advantages Disadvantages Complexity Interpretability Handling
Imbalance

Application
Examples

Random Forest (RF)

- Most widely
adopted supervised

technique.
- Reduces

overfitting and
improves accuracy.

- Consistently
high performance
(>95% accuracy).

- Less interpretable
than a single
decision tree.

- Case Study 2
shows difficulty

improving
recall even with
class_weight.

Moderate-High:
Requires building
and aggregating

multiple
decision trees.

Low-Moderate:
Not a complete

black box; feature
importance can

be extracted.

Can handle
imbalanced data
via parameters

like class_weight,
although with

varying
effectiveness.

Credit card fraud
and financial

statement
fraud identification.
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Table 1. Cont.

Algorithm Advantages Disadvantages Complexity Interpretability Handling
Imbalance

Application
Examples

Logistic Regression
(LR)

- Valued for
simplicity and high

interpretability.
- Effective for binary

classification.

- May struggle with
complex non-linear

fraud patterns.

Low: Simple linear
model; fast to train.

Very High:
Coefficients

directly indicate
the influence

of each feature.

Often requires
preprocessing (e.g.,
resampling) as it can
be biased towards
the majority class.

Binary classification
tasks common in
fraud detection.

XGBoost

- Known for excep-
tional performance

and computa-
tional speed.
- Particularly
effective with
imbalanced

datasets.

- More complex
to tune than

simpler models.
- Risk of overfitting

if not carefully
configured.

High: A gradient
boosting framework

with numerous
hyperparameters

to tune.

Low: As an
ensemble of

trees, it is difficult
to interpret,
although it

provides feature
importance scores.

Highly effective as it
sequentially builds

trees to correct
errors of prior ones.

Fraud detection in
contexts with highly

imbalanced data.

Isolation Forest

- Unsupervised,
requires no

labeled data.
- Effective at

isolating outliers,
which often

represent fraud.

- Less effective if
fraud patterns are

complex and mimic
normal behavior.

Moderate: Based
on an ensemble
of trees, often

computationally
efficient.

Low: Provides
an anomaly score

but not a clear
reason why a

point was isolated.

Natively designed
for this purpose;

its goal is to isolate
rare data points,

making it ideal for
imbalanced data.

Anomaly and
outlier detection.

Autoencoders

- Unsupervised;
learn complex

patterns
and perform

dimensionality
reduction.

- Anomaly score
is based on

reconstruction error.

- Designing the
neural network
architecture can

be complex.

High: Requires
designing

and training a
neural network.

Very Low: A
quintessential

“black-box” model;
reconstruction
error indicates
an anomaly but
not the cause.

Natively suited:
Learns the

representation of
“normal” (majority

class) data and
fails to reconstruct

anomalies well.

Anomaly detection
and dimensionality

reduction in
transactional data.

LSTM

- Specialized
for modeling

temporal sequences
and long-range
dependencies.

- Ideal for analyzing
sequences of
transactions.

- Requires data in a
sequential format.
- Computationally
expensive to train.

Very High: A
recurrent neural
network with a

complex internal
“gate” architecture.

Very Low: The
recurrent nature

and temporal
dependencies

make it extremely
difficult to interpret.

Can identify
deviations from

“normal” sequences,
but often requires

standard imbalance
techniques
in the final

classification layer.

Analysis of
sequential

transactional data to
capture temporal

fraud patterns.

5. Datasets for Fraud Detection Research
The performance and practical applicability of fraud detection models depend sig-

nificantly on the quality, characteristics, and representativeness of the datasets used for
training and evaluation. Our comprehensive analysis identified several commonly used
datasets in fraud detection research, each with distinct characteristics relevant to different
fraud types and detection scenarios.

5.1. Credit Card Fraud Detection Datasets
5.1.1. Credit Card Fraud Detection Dataset

This dataset from the Machine Learning Group at Université Libre de Bruxelles rep-
resents the most widely used resource in credit card fraud detection research, appearing
in 15 studies [10,91,92]. It contains anonymized credit card transactions from European
cardholders in September 2013, with only 492 frauds out of 284,807 transactions (0.172%
fraud rate). Most features underwent PCA transformation for confidentiality protection,
with only ’Time’ and ’Amount’ retained as original features [93].

5.1.2. German Credit Data

Created by Professor Hofmann for the UCI ML repository, this dataset focuses on credit
risk classification [94]. It contains 1000 instances with 20 attributes describing individual
characteristics and credit information. It has been utilized in studies [90,95,96].
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5.1.3. Australian Credit Approval

This UCI ML repository dataset contains 690 instances and 14 attributes related to
credit card applications [97]. It has been employed in studies [95,96,98].

5.1.4. Default of Credit Card Clients

This dataset from the UCI ML repository focuses on defaulted payments of credit card
customers in Taiwan [99]. It includes 30,000 instances with 24 attributes covering credit
data and payment history from April to September 2005. It has been used by [90,96,98].

5.2. Financial Statement Fraud Datasets
5.2.1. China Stock Market and Accounting Research (CSMAR)

This comprehensive dataset provides information on China’s stock markets and finan-
cial statements of listed companies between 1998 and 2016 [100]. It includes 35,574 samples
with 337 annual fraud cases, used in studies [17,101,102].

5.2.2. Compustat

This database contains financial and economic information on US and Canadian
companies [103]. It includes data on 228 companies, with half showing fraud in their
financial information. It has been used in studies [25,104].

5.3. Synthetic Datasets
5.3.1. PaySim Mobile Money Simulator

This synthetic dataset was generated using aggregated data from a mobile money
service in an African country [105]. It contains 6,362,620 samples with 8213 fraudulent
transactions. It has been used in studies [106–108].

5.3.2. BankSim Payment Simulator

Based on a sample of transactional data from a Spanish bank, this synthetic dataset
includes 594,643 transactions, with approximately 1.2% (7200) labeled as fraud [105]. It has
been used by [90,96,98].

5.4. Other Specialized Datasets
5.4.1. Insurance Company Benchmark (COIL 2000)

This dataset contains information about customers of an insurance company, including
product usage and sociodemographic data [109]. It has 9822 instances with 86 attributes
and has been used in insurance fraud detection studies [19,110].

5.4.2. Bitcoin Network Transactional Metadata

This dataset contains Bitcoin transaction metadata from 2011 to 2013, with 30,000 in-
stances and 11 attributes related to Bitcoin transactions and flows [111]. It has been used
for analyzing anomalies in cryptocurrency transactions [112].

5.5. Characteristics of Fraud Detection Datasets

Our analysis reveals several important characteristics that significantly impact fraud
detection research.

5.5.1. Class Imbalance

Most fraud detection datasets exhibit extreme class imbalance, with fraudulent trans-
actions typically constituting less than 1% of all transactions. This imbalance accurately
reflects real-world fraud prevalence but presents significant challenges for model training
and evaluation [40,113].
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5.5.2. Feature Transformation

Many datasets, particularly those containing sensitive financial information, undergo
feature transformation (e.g., PCA) to protect privacy. While necessary for data protection,
this transformation can obscure the interpretability of resulting models and limit domain
knowledge integration [10].

5.5.3. Temporal Aspects

Some datasets preserve crucial temporal information, allowing for analysis of how
fraud patterns evolve over time. This temporal dimension is essential for developing
models that can adapt to emerging fraud strategies and concept drift.

5.5.4. Real vs. Synthetic Data

While most studies (approximately 93%) utilize real-world data, there is growing
interest in synthetic datasets that can simulate diverse fraud scenarios without privacy
concerns. These synthetic datasets prove particularly valuable for testing model robustness
against various fraud strategies and for scenarios where real fraud data is scarce [105].

5.6. Guidelines for Future Dataset Development

Based on the identified challenges, we propose the following guidelines to advance
research in this area:

• Establishment of Standardized Benchmarks: The community would benefit greatly
from the creation and maintenance of shared, large-scale, and contemporary bench-
mark datasets. This would allow for a more direct and fair comparison of different
models and techniques.

• Privacy-Preserving Data Sharing: Techniques like federated learning should be
further explored to enable collaborative model training across different institutions
without centralizing sensitive data. This could lead to more robust models trained on
a wider variety of fraud patterns.

• Advanced Synthetic Data Generation: While synthetic datasets exist, future work
should focus on generating data that more accurately captures complex multi-modal
fraud scenarios and temporal dynamics using advanced generative models like
Wasserstein GANs (WGANs) or variational autoencoders (VAEs).

The choice of dataset significantly impacts both model performance and practical
applicability of fraud detection systems. Datasets that accurately reflect the complexity and
evolving nature of real-world fraud are essential for developing effective detection systems.
However, the limited availability of recent, comprehensive, and publicly accessible fraud
datasets remains a significant challenge for researchers in this field.

6. Performance Metrics for Fraud Detection
Evaluating the performance of fraud detection models requires appropriate metrics

that address the specific challenges of the domain, particularly class imbalance and asym-
metric misclassification costs. The selection of evaluation metrics must carefully consider
the operational context and business requirements of fraud detection systems.

6.1. Supervised Learning Metrics
6.1.1. Accuracy

Accuracy measures the proportion of correct predictions (both fraud and non-fraud)
to total predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)
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While commonly reported, accuracy can be misleading in highly imbalanced datasets,
where simply classifying all transactions as non-fraudulent would yield deceptively high
accuracy [114].

6.1.2. Precision and Recall

These two metrics are crucial for imbalanced classification. Precision measures the
proportion of correctly identified fraudulent transactions among all transactions classified
as fraudulent:

Precision =
TP

TP + FP
(3)

High precision indicates a low false positive rate (also known as Type I Error), which
is critically important for minimizing unnecessary interventions in legitimate transac-
tions [115]. Conversely, recall (or sensitivity) measures the proportion of actual fraudulent
transactions that were correctly identified:

Recall =
TP

TP + FN
(4)

High recall is essential for minimizing financial losses and ensuring regulatory com-
pliance as it directly relates to a low false negative rate (Type II Error, which is equal to
1 − Recall) [115,116].

6.1.3. F1-Score

F1-score is the harmonic mean of precision and recall, providing a balanced measure
of model performance:

F1-Score =
2 × Precision × Recall

Precision + Recall
(5)

This metric is particularly valuable for fraud detection as it balances the need to
minimize both false positives and false negatives, making it especially useful for imbalanced
datasets [117].

6.1.4. Area Under the ROC Curve (AUC–ROC)

AUC–ROC represents the model’s ability to discriminate between fraudulent and
non-fraudulent transactions across different threshold settings:

AUC–ROC =
∫ 1

0
TPR(FPR−1(t))dt (6)

Higher AUC–ROC values indicate better model performance, with values closer to 1
representing near-perfect discrimination [17].

6.2. Unsupervised Learning Metrics

Evaluating unsupervised learning models for fraud detection presents unique chal-
lenges as these models do not rely on labeled training data. Several specialized metrics
have been developed for this purpose.

6.2.1. Silhouette Coefficient

This metric measures how well data points are clustered, with values ranging from
−1 to 1:

s(j) =
y − x

max(x, y)
(7)

where x is the average distance between point j and other points in its cluster, and y is the
minimum average distance to points in another cluster [118].
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The average silhouette coefficient measures clustering quality by assessing how well
each data point fits within its assigned cluster. Higher average silhouette width indicates
better clustering performance.

6.2.2. Davies–Bouldin Index

This metric evaluates clustering quality based on the ratio of within-cluster scatter to
between-cluster separation:

DB =
1
K

k

∑
i=1

max
j ̸=i

(
αi + αj

d(ci, cj)

)
(8)

where K is the number of clusters, ci and cj are cluster centroids, and αi and αj are the
average distances of all elements in clusters i and j to their respective centroids [118].

6.2.3. Rand Index

This measures the similarity between two data clusterings:

RI =
TP + TN

TP + FP + TN + FN
× 100 (9)

It is particularly useful when external labels are available for evaluation purposes [118].
Having clustering algorithms with very high silhouette coefficient but low external mea-
sures indicates poor performance when observations are assigned to wrong clusters.

6.3. Practical Considerations in Metric Selection

The selection of appropriate performance metrics should consider several domain-
specific factors:

6.3.1. Class Imbalance

In highly imbalanced datasets, metrics like precision, recall, F1-score, and AUC–ROC
provide more meaningful assessments than accuracy alone [117].

6.3.2. Operational Context

The operational context of fraud detection systems should inform metric selection.
For example, in credit card fraud detection, minimizing false positives (high precision)
may be prioritized to avoid customer inconvenience, while, in money laundering de-
tection, minimizing false negatives (high recall) may be more critical due to regulatory
requirements [119].

6.3.3. Cost Sensitivity

The asymmetric costs of false positives and false negatives should be carefully consid-
ered. Cost-sensitive metrics that incorporate the financial impact of misclassifications can
provide more practically relevant performance assessments [115].

6.3.4. Time Sensitivity

For real-time fraud detection systems, metrics that incorporate detection latency are
valuable as early detection can significantly reduce financial losses [75].

The comprehensive evaluation of fraud detection systems requires multiple com-
plementary metrics that collectively address the complex requirements of the domain.
While no single metric can capture all relevant aspects of performance, carefully selected
metric combinations can provide meaningful insights into a system’s practical utility and
operational effectiveness.
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6.4. SoTA Micro-Benchmark on Standard Dataset (ULB 2013)

In Table 2, we report AUPRC for five commonly used methods on the ULB 2013
credit-card dataset. Tree/boosting methods lead AUPRC; kNN lags; values provide an
external baseline for our proprietary studies [93,120–122].

Table 2. SoTA micro-benchmark on ULB 2013 (AUPRC).

Dataset Method AUPRC

ULB 2013 Logistic Regression (L1) 0.724
ULB 2013 Random Forest 0.871
ULB 2013 XGBoost 0.867
ULB 2013 AdaBoost 0.808
ULB 2013 K-Nearest Neighbor 0.585

7. Case Study 1 : Application of Supervised Models on a Real-World
Banking Dataset

To provide practical context for the reviewed machine learning techniques and perfor-
mance metrics, this section presents a comprehensive case study based on the application
of selected supervised learning models to a real-world financial dataset.

While this case study focuses on tree-based supervised models, it is worth noting
that other studies have demonstrated the potential of different approaches. For instance,
deep learning models like LSTMs have shown promise in capturing sequential patterns in
transaction data, while hybrid models combining unsupervised anomaly detection with
supervised classifiers have been effective in identifying novel fraud typologies.

7.1. Dataset and Preprocessing

The dataset for this study was derived from actual transactional data provided by a
financial institution, comprising two main sources: bank transfers (“Bonifici”) and cardless
payments (“Cardless”). The raw data, initially consisting of over 427,000 records across
multiple interconnected tables, underwent a multi-stage preprocessing pipeline to prepare
it for modeling.

First, a data cleaning stage was performed to ensure data quality. Records with critical
missing values (e.g., transaction amount and timestamp) were excluded, and duplicate
entries were removed to prevent model bias. Following this, a feature engineering process
was undertaken to extract relevant variables.

From the cleaned dataset, a specific subset of 48,559 instances was carefully selected.
This selection was not random but targeted a distinct operational period for which a
meticulously verified ground truth was available. Each transaction in this subset was
authoritatively labeled as either legitimate or fraudulent by domain experts. This process,
while reducing the dataset size, was critical to guarantee a high-quality dataset for a
controlled and reliable evaluation of model performance.

The resulting features included a combination of numerical and categorical at-
tributes. To ensure compatibility with the machine learning models, categorical features
were transformed using one-hot encoding. In line with best practices for tree-based
ensembles, numerical features were left unscaled as these models are not sensitive to
feature magnitude.

Table 3 summarizes the key characteristics of the final dataset used for the experiments.
A significant and challenging characteristic of this dataset is the severe class imbalance,
with a fraud rate of approximately 1.43%.
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Table 3. Summary of the banking dataset characteristics.

Characteristic Value

Total Instances 48,559
Fraudulent Instances 696
Fraud Rate ~1.43%
Initial “Bonifici” Records 242,792 records, 52 features
Initial “Cardless” Records 184,729 records, 50 features

Example Numerical Features
num_impor, num_hour, num_day_of_month,
num_month, num_day_of_week, num_longi,
num_latit

Example Categorical Features cat_CountryCodeBIC_f415b, cat_bank_code_4f875

7.2. Experimental Setup and Models

Three supervised learning algorithms, discussed comprehensively in 4, were selected
for this comparative analysis:

• Random Forest (RF).
• Extreme Gradient Boosting (XGBoost).
• Extra Trees (ETs).

The models were trained on the processed dataset to classify transactions as either
legitimate (class 0) or fraudulent (class 1). The primary evaluation was conducted using
confusion matrices and comprehensive classification reports, focusing on metrics particu-
larly relevant to imbalanced datasets, such as precision, recall, and F1-score for the minority
(fraud) class. Feature importance was also extracted from each model to identify key
indicators contributing to fraud classification.

7.2.1. Data Splits and Validation

We adopt a temporal split to prevent leakage: training on transactions from period
T0 → Tn−1 and testing on Tn. Within training, we use a stratified k-fold cross-validation
(k = 5) to select hyperparameters. We fix a global random seed (e.g., 42) and repeat each
experiment r = 3 times; we report mean ± standard deviation.

7.2.2. Preprocessing and Leakage Prevention

Categorical features are one-hot encoded; numerical features are left unscaled for
tree ensembles. To avoid customer-level leakage, all transactions belonging to the same
customer (or account identifier available) are assigned to the same split. Feature derivations
use only past information relative to transaction time (no look-ahead).

7.2.3. Hyperparameter Tuning

We perform randomized search with N = 50 configurations per model, selecting by
validation AUPRC.

• RF/ET: n_estimators∈ {200, 400, 800}, max_depth∈ {None, 8, 12, 16}, max_features
∈ {sqrt, log2, 0.5}, min_samples_leaf ∈ {1, 2, 5, 10}.

• XGB: n_estimators ∈ {300, 600, 1000}, learning_rate ∈ [0.02, 0.2], max_depth ∈
{4, 6, 8}, subsample, colsample_bytree ∈ [0.6, 1.0], reg_alpha, reg_lambda ∈ [0, 10].

7.2.4. Probability Calibration and Thresholding

We calibrate scores with isotonic regression on the validation folds and choose the
operating threshold to minimize expected cost:

Cost = CFN · FN + CFP · FP,
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with CFN/CFP set by business constraints (e.g., 50:1). We also report threshold-free metrics
(AUPRC and AUROC).

7.2.5. Evaluation Metrics

In addition to precision/recall/F1 and FPR already reported, we add (i) area under
the precision–recall curve (AUPRC), (ii) Precision@K and Recall@K (K = top 0.1% and 0.5%
scored transactions), (iii) calibration (Brier score; reliability plot), and (iv) cost curves for
several CFN/CFP ratios.

7.3. Results and Analysis

Test split and prevalence. The held-out test set contains N = 5000 transactions with
a fraud prevalence of 2.37% (119 positives). We report AUPRC and Recall@K (K = 0.1%
and 0.5% of top-ranked transactions), in addition to standard metrics. AUPRC is computed
from out-of-sample fraud probabilities; Recall@K is the recall achieved when screening the
top K% transactions ranked by the model score (K = 0.1% ⇒ 5 alerts; K = 0.5% ⇒ 25 alerts).
(see Figure 1 and Table 4)

Table 4. Case Study 1—test set results (N = 5000; prevalence 2.37%). We report accuracy, F1
(weighted), AUPRC, and Recall@K.

Model Accuracy F1 (w) AUPRC Recall@0.1% Recall@0.5%

Random Forest 0.9838 0.9801 0.6188 0.0336 0.2017
Gradient Boosting 0.9810 0.9756 0.5153 0.0336 0.1765
KNN 0.9806 0.9755 0.4123 0.0336 0.1933
Logistic Regression 0.9768 0.9733 0.3263 0.0336 0.1261
AdaBoost 0.9756 0.9675 0.1914 0.0336 0.1008
SVC (probability) 0.9772 0.9672 0.4957 0.0336 0.1849

Best model and confusion matrix. The best overall model is Random Forest (F1(w) = 0.9801;
AUPRC = 0.6188). At the default decision threshold, its confusion matrix is[

TN = 4878 FP = 3
FN = 78 TP = 41

]

(precisionfraud = 0.93; recallfraud = 0.34).
Operational screening (Recall@K). Ranking by the fraud score, Random Forest re-

trieves the following: (i) Recall@0.1% = 0.0336 ⇒ among the top 5 alerts, it catches ∼4
frauds (of 119); (ii) Recall@0.5% = 0.2017 ⇒ among the top 25 alerts, it catches ∼24 frauds.
These figures provide an actionable triage view for limited human capacity and complement
threshold-based metrics.

Takeaways. (1) Ranking quality: Tree/boosting methods (RF and GBDT) dominate
AUPRC, confirming better ordering of rare positives under heavy imbalance. (2) Capacity-
aware recall: With only 25 top-ranked alerts, RF recovers roughly one-fifth of all frauds—
useful when manual review bandwidth is tight. (3) Threshold vs. ranking: High accuracy
with low fraud recall at a fixed threshold suggests cost-aware thresholding or top-K review
as preferred operating modes in production.
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Figure 1. Case Study 1—precision–recall curve for the best model (Random Forest). The average
precision (AUPRC) is 0.619 on the test set.

7.4. Performance Analysis and Operational Implications

The detailed results presented highlight the persistent challenges in operational fraud
detection. While the overall accuracy is high, it remains a misleading metric in this
imbalanced context. A more insightful analysis focuses on the trade-off between ranking
quality (AUPRC) and the model’s performance at a fixed decision threshold.

The best-performing model, Random Forest, achieves an AUPRC of 0.619, indicating
a good ability to rank fraudulent transactions higher than legitimate ones. However,
this ranking strength does not translate to sufficient performance at a standard decision
threshold. The model’s recall for the fraud class is only 0.34. Operationally, this is the most
critical finding: the system, even at its best, fails to detect roughly two-thirds (66%) of all
fraudulent transactions, representing an unacceptable level of risk for a financial institution.

While the model’s high precision (0.93) ensures that the few alerts it generates are
highly reliable, this comes at the severe cost of a large number of missed frauds (false
negatives). This starkly illustrates that even a well-ranked model can be operationally
ineffective if deployed with a simple threshold-based strategy.

The persistently low recall suggests that the challenge may be inherent to the data
itself, where fraudulent patterns are too subtle or similar to legitimate behavior to be
distinguished by standard models alone. While this study focused on tree-based ensembles,
the literature indicates that more advanced strategies could yield better results. These
include data-level approaches like synthetic oversampling (e.g., SMOTE) to create a more
balanced training set [113,116], algorithm-level approaches such as cost-sensitive learning
that assigns a higher penalty to misclassifying frauds [12,115], and hybrid models that
combine anomaly detection with supervised classification [85,86].

Ultimately, this analysis confirms that the supervised methods tested, when used in
isolation, are insufficient for robust standalone deployment. The fundamental challenge
of balancing adequate fraud detection (high recall) with an acceptable level of customer
friction (high precision) requires moving beyond standard models toward either more
sophisticated architectures or different operational paradigms, such as the top-K screening
explored in our Recall@K analysis.
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7.5. Implications for Fraud Detection Research

This case study underscores several persistent challenges outlined throughout
this review:

1. Class Imbalance Impact: The low prevalence of fraud (1.43% in this experiment)
makes it extremely difficult for models to learn distinctive fraud patterns without
specialized techniques and careful algorithm selection.

2. Misclassification Cost Asymmetry: The relatively low recall for fraud detection
means a significant proportion of frauds would remain undetected. Conversely, even
a low FPR can translate into numerous false alarms, emphasizing the critical need for
cost-sensitive learning approaches.

3. Model Selection and Optimization: The performance varies significantly between
models, with ET showing slight advantages in F1-score and recall for fraud in this spe-
cific instance. This highlights the necessity for careful model selection, hyperparameter
optimization, and potentially ensemble approaches.

4. Need for Advanced Methodologies: The results suggest that basic supervised models,
even with feature engineering, may not suffice for robust fraud detection. This points
toward the importance of exploring hybrid methods, advanced ensemble techniques,
deep learning approaches, or sophisticated unsupervised anomaly detection systems.

This practical application demonstrates that, while machine learning offers power-
ful analytical tools, achieving effective and operationally viable fraud detection systems
requires addressing inherent challenges through sophisticated methodologies, careful
evaluation protocols, and approaches specifically tailored to the financial context and
business requirements.

8. Case Study 2: Application of Random Forest on a Real-World Bank
Transfer Dataset
8.1. Dataset

The initial dataset was extracted from the Intesa Sanpaolo (ISP) database, or-
ganized in a table containing 90,314 records of anonymous users’ bank transfers.
The dataset exhibits strong class imbalance, with only 3285 fraudulent transactions
among 90,314 total transactions (∼3.6%). All the data were encrypted and anonymized
to ensure privacy and compliance with regulatory requirements. In particular, all the
categorical and textual variables were hashed using the SHA-256 algorithm. For compu-
tational purposes and to enable the running of machine learning algorithms, the hashed
information was further transformed into numerical representations through appropriate
encoding strategies.

Each transaction is described by a set of variables that underwent a feature engineering
process to derive temporal, spatial, financial, technical, and contextual features. Temporal
information includes the hour, day, day of the week, and a weekend indicator, while spatial
data capture the latitude and longitude of the transaction origin. Financial attributes com-
prise the transaction amount, currency code, divisibility flags (by 2, 3, 5, or 10), and decimal
patterns (e.g., 0.00, 0.50, and 0.99). The dataset also includes metadata such as the Bank
Identifier Code (BIC) country code, bank codes, client type, and mobile carrier information.

Security and authentication indicators are available to characterize the transaction envi-
ronment, including flags for secure app usage, fingerprint authentication, instant payment,
and additional elements such as fingerprint certificate, secure session ID, and digital signa-
ture. Furthermore, the IP address associated with each transaction has been decomposed
into its four octets and encrypted, ensuring full compliance with privacy standards.



Appl. Sci. 2025, 15, 11787 21 of 32

Finally, the dataset contains semantic information derived from the transaction descrip-
tion field (causal field), represented as a fixed-length Word2Vec embedding (10 dimensions),
and a set of flags describing the access environment (e.g., access mode, device model,
operating system, application name and version, user agent, and connection type).

8.2. Experiments

In classification problems, it is common to encounter imbalanced data, where certain
classes are significantly underrepresented compared to others. Typical examples include
fraud detection, where fraudulent transactions may represent less than 5% of the data,
or medical diagnostics, where a disease might only appear in a small fraction of the pop-
ulation. When trained on such data without any corrective measures, a classifier tends
to be biased toward the majority class, often resulting in high overall accuracy but poor
performance on the minority class. This imbalance severely limits the model’s usefulness in
real-world scenarios, where correct identification of the minority class is often the primary
objective. To address this issue, the Random Forest algorithm offers the class_weight
parameter, which allows assigning different weights to classes with the aim of penalizing
misclassifications of minority classes more heavily. By introducing class_weight, the de-
cision criteria used to construct each individual tree (such as Gini impurity or entropy)
are modified to account for the relative importance of each class. This adjustment leads to
splits that are more sensitive to minority samples, thereby improving the model’s ability to
identify them. For these reasons, we performed three classification experiments adopting
the Random Forest algorithm with different setups of the class_weightparameter. In par-
ticular, in the first experiment, it was set to “None” (the default). In this way, all the classes
are treated equally, which is generally inappropriate in the presence of class imbalance.
In the second experiment, it was set to “balanced”. The algorithm automatically adjusts
weights inversely proportional to class frequencies in the entire training set, effectively
compensating for imbalance and encouraging the model to pay more attention to minority
classes. In the third experiment, setting it to “balanced_subsample” results in weights
being computed in the same way as “balanced”, but these weights are calculated indepen-
dently for each bootstrap sample drawn to train an individual tree. This can lead to slightly
different weighting across trees, potentially improving robustness when class distributions
vary across different subsets of the data.

8.3. Results and Critical Analysis

To evaluate the impact of different class_weight settings on model performance,
we applied the Random Forest models to a held-out test set. The test split contains
23,310 transactions, with a fraud prevalence of 3.39%. In addition to standard metrics,
we report AUPRC and Recall@K, which are particularly informative in imbalanced clas-
sification scenarios. AUPRC is computed from out-of-sample fraud probabilities, while
Recall@K measures the fraction of fraud cases captured when screening the top K% of
transactions ranked by the model score (K = 0.1% corresponds to ∼23 alerts; K = 0.5%
corresponds to ∼117 alerts). These metrics allow us to assess how well each class_weight
configuration improves the identification of the minority (fraud) class in a realistic setting.

The results of the three experiments, summarized in Table 5, are strikingly similar
and provide clear insight into the limitations of simple algorithmic adjustments for class
imbalance. This uniformity is the first and most important finding: simple algorithmic
adjustments like using class_weight (both balanced and balanced_subsample) did not
lead to any substantial performance improvements. Moreover, despite the high overall
accuracy and a relatively high weighted F1-score (both around 0.97), these global metrics
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are misleading in the presence of extreme class imbalance and mask the model’s critical
failure to identify the minority class.

Table 5. Case Study 2—test set results (N = 23,310; prevalence = 3.39%). We report accuracy, F1
(weighted), AUPRC, and Recall@K.

class_weightclass_weightclass_weight Accuracy F1 (w) AUPRC Recall@0.1% Recall@0.5%

None (Default) 0.9769 0.9721 0.6969 0.0291 0.1403
balanced 0.9753 0.9694 0.6787 0.0291 0.1365
balanced_subsample 0.9753 0.9694 0.6787 0.0291 0.1365

Among the three configurations, the model trained with class_weight = None
achieved the best overall balance between precision and recall. The corresponding confu-
sion matrix on the held-out test set is reported below:[

TN = 22,487 FP = 32
FN = 506 TP = 285

]

with precisionfraud = 0.90 and recallfraud = 0.36. In Figure 2, the PR curve for
class_weight = None is shown.

Figure 2. Case Study 2—precision–recall curve for class_weight = None. The average precision
(AUPRC) is 0.697 on the test set.

Even though the AUPRC is moderately high, suggesting that the model is able to dis-
tinguish between classes, the recall at low detection rates is critically low. For example, at a
threshold of 0.1%, the model only identifies approximately 2.9% of fraudulent transactions.

From an operational perspective, this is a significant finding: even when the model
is explicitly instructed to penalize errors on the minority class more heavily, it still fails
to identify the vast majority of fraudulent transactions. This outcome highlights a key
limitation of the class_weight parameter. While it adjusts the cost function, it does not
generate new information or alter the feature space. If the fraudulent transactions are
located in dense overlapping regions with legitimate transactions, simply increasing their
weight is often insufficient to allow the algorithm to find a clean generalizable separation
boundary. The model remains unable to learn a distinct pattern from the few available
positive samples.

Therefore, these results strongly suggest that more sophisticated strategies are required.
A more promising path would be to explore data-level techniques that directly modify the
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dataset, such as oversampling (e.g., SMOTE) to increase the number of minority samples or
undersampling to reduce the majority class. Another powerful alternative, supported by the
literature, lies in using advanced ensemble methods specifically designed for imbalanced
data or hybrid approaches that can isolate anomalous patterns before a final classification
occurs [12,85].

In conclusion, this case study serves as a practical demonstration that tackling severe
class imbalance requires more than a single parameter tweak. It underscores the necessity of
employing multifaceted strategies that either reshape the data or use algorithms inherently
designed to handle such challenging conditions.

9. Challenges and Future Directions
Despite significant advances in ML-based fraud detection, several persistent challenges

continue to limit system effectiveness, while new opportunities are emerging in this rapidly
evolving field.

9.1. Current Challenges
9.1.1. Data Imbalance and Feature Engineering

The extreme class imbalance in fraud datasets remains a fundamental and persistent
challenge. Fraudulent transactions typically constitute less than 1% of all transactions,
making it exceptionally difficult for models to learn discriminative features for the minority
class without specialized techniques [4,5]. Compounding this issue is the complexity of
feature engineering, which is crucial for success but requires substantial domain expertise
and is often labor-intensive [123].

Furthermore, drawing inspiration from advances in computer vision, such as meth-
ods for learning robust feature representations in complex scenes for accurate human
parsing [124], could offer valuable pathways to improve feature extraction and model
generalization in the intricate domain of financial transactions.

9.1.2. Concept Drift and Real-Time Requirements

Fraud patterns evolve continuously, leading to concept drift, where a model’s per-
formance degrades as the relationship between features and fraud likelihood changes.
Developing models that can adapt to these evolving patterns without requiring frequent re-
training remains a significant challenge [7]. This is further complicated by modern financial
systems that require real-time detection, imposing strict constraints on model complexity
and computational latency.

Moreover, the adversarial nature of fraud detection shares similarities with challenges
in information security. Techniques developed for robust watermarking against geometric
attacks [125], which focus on resisting complex interference, may provide useful insights
for building fraud detection systems resilient to dynamic environments and sophisticated
adversarial attempts.

9.1.3. The “Black-Box” Problem and the Need for Explainable AI (XAI)

As fraud detection models become increasingly complex, their interpretability de-
creases, creating a “black box” that is problematic in regulatory environments. Financial
regulations, such as the GDPR’s “right to explanation,” demand that institutions be able to
justify automated decisions. This makes explainability not just a desirable feature but a
critical compliance requirement [8,9].

Explainable AI (XAI) provides a pathway to address this challenge. Techniques like
SHAPs (SHapley Additive exPlanations) and LIMEs (Local Interpretable Model-Agnostic
Explanations) are gaining significant traction for providing transparency [7]. For the models
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in our case studies, these methods could be applied to provide crucial insights. For instance,
for a transaction flagged by our Random Forest model, SHAP values could reveal precisely
which features—such as an unusually high transaction amount (num_impor), an atypical
time of day (num_hour), or a high-risk country code—were the primary drivers behind
the fraud classification. This transforms an opaque alert into an actionable and auditable
insight for fraud analysts.

9.1.4. Data Privacy, Security, and the Promise of Federated Learning

Fraud detection systems require access to vast amounts of sensitive financial data,
raising significant privacy and regulatory concerns [20]. Centralizing customer data from
multiple sources creates a high-value target for cyberattacks and complicates compliance
with data protection laws. Federated learning emerges as a powerful privacy-preserving
paradigm to overcome this obstacle [126].

Instead of pooling raw data, federated learning allows multiple institutions to col-
laboratively train a shared model without ever exposing their confidential data. Each
institution trains the model locally on its own dataset, and only the resulting model up-
dates (anonymous parameters or gradients) are sent to a central server for aggregation.
This approach allows a global model to learn from a much wider and more diverse set
of fraud patterns—improving its accuracy and robustness—while ensuring that sensitive
customer information never leaves the secure perimeter of each participating institution.

9.1.5. Algorithmic Bias and Ethical Implications

A significant, and often overlooked, challenge is the risk of embedding societal biases
into automated fraud detection systems. If historical data used for training contains biases,
an ML model will learn and amplify them. For example, a model might unfairly associate a
higher risk of fraud with transactions originating from low-income neighborhoods or with
specific demographic groups simply because of historical data imbalances or prejudiced
policing practices reflected in the data. This can lead to discriminatory outcomes, where
certain groups of legitimate customers are subjected to higher rates of declined transactions
or account blockages.

The ethical implications of such biases are profound, posing significant reputational
and legal risks to financial institutions [9]. Addressing this requires a dedicated focus on
fairness throughout the model lifecycle. This includes conducting bias audits on datasets,
employing fairness-aware machine learning algorithms, and regularly monitoring model
predictions to ensure equitable treatment across different user groups. The pursuit of
accuracy must be balanced with a commitment to fairness and ethical responsibility.

9.2. Emerging Trends and Opportunities
9.2.1. Deep Learning Advances

Deep learning approaches, particularly those designed for sequential data analysis
(e.g., LSTM and GRU), show considerable promise for capturing complex temporal patterns
in transaction sequences and behavioral data [76,90].

9.2.2. Graph-Based Methods

Graph-based approaches that model complex relationships between entities (cus-
tomers, merchants, transactions, and accounts) are emerging as effective tools for detect-
ing sophisticated fraud schemes involving multiple participants and complex network
structures [127].

These methods excel at uncovering coordinated fraudulent activities, such as money
laundering rings or collusion networks, that are difficult to detect with transaction-level
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models. However, their computational complexity and the need for graph-specific data
structures can be barriers to implementation.

9.2.3. Federated Learning

Federated learning approaches allow models to be trained across multiple institutions
without sharing raw sensitive data, addressing privacy concerns while leveraging broader
data sources and collective intelligence [126].

9.2.4. Explainable AI Integration

Techniques for explaining model decisions are becoming increasingly important in
fraud detection applications, with methods like SHAPs (SHapley Additive exPlanations)
and LIMEs (Local Interpretable Model-Agnostic Explanations) gaining significant traction
for regulatory compliance and operational transparency [7].

Grad-CAM represents a valuable approach for model debugging, using gradients as
importance measures in feature space. It does not require specific CNN architectures and
can be applied to any gradient-based neural network model. SHAP values, derived from
cooperative game theory, assess feature contributions by analyzing prediction changes
when features are removed from feature sets.

9.2.5. Synthetic Data Generation

Advanced techniques for generating realistic synthetic fraud data, such as GANs and
variational autoencoders, are being explored to address data scarcity and privacy concerns
while providing diverse training scenarios [84,107].

9.2.6. Hybrid and Ensemble Approaches

Sophisticated combinations of multiple ML techniques, leveraging the complemen-
tary strengths of different approaches, show significant promise for improving detection
performance across diverse fraud scenarios and operational contexts [81,128].

9.2.7. Transfer Learning Applications

Transfer learning approaches that can leverage knowledge gained from one fraud
detection task to improve performance on related tasks with limited data are emerging as
valuable techniques for addressing data scarcity in specific domains [6].

9.3. Future Research Directions

Based on our comprehensive analysis, several promising directions for future
research emerge.

9.3.1. Advanced Unsupervised Techniques

Further exploration of sophisticated unsupervised and semi-supervised techniques is
needed, particularly for detecting novel fraud patterns not represented in historical labeled
data and for addressing the challenge of limited labeled fraud examples [35,108].

9.3.2. Real-Time Adaptive Systems

Development of fraud detection systems that can adapt to evolving fraud patterns in
real time, without requiring periodic retraining or manual intervention, would effectively
address the persistent challenge of concept drift [7].

9.3.3. Comprehensive Evaluation Frameworks

Standardized frameworks for evaluating fraud detection systems that consider mul-
tiple performance dimensions (accuracy, interpretability, computational efficiency, adapt-
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ability, and regulatory compliance) would facilitate meaningful comparisons between
approaches and accelerate research progress [117].

9.3.4. Domain-Specific Approaches

Tailored approaches for specific fraud types (e.g., money laundering, insurance fraud,
and tax evasion) that incorporate domain-specific knowledge, regulatory constraints,
and operational requirements could significantly improve detection effectiveness [28,32].

9.3.5. Cross-Organizational Collaboration

Frameworks for collaborative fraud detection across organizations that preserve data
privacy while leveraging broader pattern recognition capabilities could enhance detection
of sophisticated fraud schemes that span multiple institutions [112].

9.3.6. Behavioral Analysis Integration

Integration of advanced behavioral analytics that model normal user behavior patterns
and detect subtle deviations could improve fraud detection accuracy while reducing false
positives and enhancing user experience [36].

9.3.7. Ethical Considerations

Research on the ethical implications of automated fraud detection, including fairness,
bias mitigation, transparency, and accountability, is increasingly important as these systems
become more widespread and influential [9].

10. Conclusions
This comprehensive review has presented a systematic analysis of machine learn-

ing techniques for financial fraud detection, examining the current state of the research,
practical applications, and emerging trends. Our analysis confirms the dominance of super-
vised learning methods in the literature, but it also highlights the persistent fundamental
challenges that limit their effectiveness in real-world operational environments.

The unique contribution of this paper lies in bridging theoretical knowledge with a
critical assessment of practical application. We achieve this through two case studies on
proprietary real-world banking data, which move the discussion from abstract performance
to concrete operational trade-offs. Crucially, our experiments reveal a persistent and critical
limitation: even with hyperparameter tuning and class weight adjustments, the models
struggle to achieve adequate recall for the minority (fraud) class. This finding is not merely
a technical result; it is a strategic insight demonstrating that standard supervised models,
when used in isolation, are often insufficient to overcome the extreme class imbalance
inherent in financial fraud data.

This identified gap directly informs a more strategic vision for future research. The low
recall obtained highlights the need to explore hybrid architectures with resampling or cost-
sensitive models. Future work should focus on hybrid models that combine unsupervised
anomaly detection for identifying novel threats with supervised classifiers trained on
enriched datasets using advanced resampling (e.g., SMOTE variations) or generative (e.g.,
GANs) techniques. Furthermore, to meet the regulatory and operational demands for
transparency, the integration of Explainable AI (XAI) is no longer optional. Techniques like
SHAPs and LIMEs must be embedded into the development lifecycle to transition from
“black-box” predictors to decision-support systems that provide clear actionable rationales
for fraud alerts.

As financial systems become increasingly interconnected, the path forward requires a
shift towards more adaptive, interpretable, and collaborative systems. Research should pri-
oritize real-time adaptive models that are capable of countering concept drift, and privacy-
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preserving frameworks like federated learning to enable cross-institutional collaboration
without centralizing sensitive data. By focusing on these strategic directions—inspired
directly by the practical limitations observed—the research community can develop more
robust and effective defenses against the persistent and evolving threat of financial fraud.

Success in this endeavor will require close collaboration between researchers, practi-
tioners, financial institutions, and regulatory bodies to ensure that technological advances
translate into practical, transparent, and ethically sound solutions that protect the integrity
of the global financial ecosystem.
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